numpy.ma.mask_rowcols
-
numpy.ma.mask_rowcols(a, axis=None)
[source] -
Mask rows and/or columns of a 2D array that contain masked values.
Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the
axis
parameter.- If
axis
is None, rows and columns are masked. - If
axis
is 0, only rows are masked. - If
axis
is 1 or -1, only columns are masked.
- Parameters
-
-
aarray_like, MaskedArray
-
The array to mask. If not a MaskedArray instance (or if no array elements are masked). The result is a MaskedArray with
mask
set tonomask
(False). Must be a 2D array. -
axisint, optional
-
Axis along which to perform the operation. If None, applies to a flattened version of the array.
-
- Returns
-
-
aMaskedArray
-
A modified version of the input array, masked depending on the value of the
axis
parameter.
-
- Raises
-
- NotImplementedError
-
If input array
a
is not 2D.
See also
-
mask_rows
-
Mask rows of a 2D array that contain masked values.
-
mask_cols
-
Mask cols of a 2D array that contain masked values.
-
masked_where
-
Mask where a condition is met.
Notes
The input array’s mask is modified by this function.
Examples
>>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_rowcols(a) masked_array( data=[[0, --, 0], [--, --, --], [0, --, 0]], mask=[[False, True, False], [ True, True, True], [False, True, False]], fill_value=1)
- If
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/generated/numpy.ma.mask_rowcols.html