numpy.linalg.eigvals
-
numpy.linalg.eigvals(a)
[source] -
Compute the eigenvalues of a general matrix.
Main difference between
eigvals
andeig
: the eigenvectors aren’t returned.- Parameters
-
-
a(…, M, M) array_like
-
A complex- or real-valued matrix whose eigenvalues will be computed.
-
- Returns
-
-
w(…, M,) ndarray
-
The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices.
-
- Raises
-
- LinAlgError
-
If the eigenvalue computation does not converge.
See also
-
eig
-
eigenvalues and right eigenvectors of general arrays
-
eigvalsh
-
eigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays.
-
eigh
-
eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays.
-
scipy.linalg.eigvals
-
Similar function in SciPy.
Notes
New in version 1.8.0.
Broadcasting rules apply, see the
numpy.linalg
documentation for details.This is implemented using the
_geev
LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays.Examples
Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix,
Q
, and on the right byQ.T
(the transpose ofQ
), preserves the eigenvalues of the “middle” matrix. In other words, ifQ
is orthogonal, thenQ * A * Q.T
has the same eigenvalues asA
:>>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0)
Now multiply a diagonal matrix by
Q
on one side and byQ.T
on the other:>>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) # random
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/generated/numpy.linalg.eigvals.html