numpy.linalg.cholesky
-
numpy.linalg.cholesky(a)
[source] -
Cholesky decomposition.
Return the Cholesky decomposition,
L * L.H
, of the square matrixa
, whereL
is lower-triangular and .H is the conjugate transpose operator (which is the ordinary transpose ifa
is real-valued).a
must be Hermitian (symmetric if real-valued) and positive-definite. No checking is performed to verify whethera
is Hermitian or not. In addition, only the lower-triangular and diagonal elements ofa
are used. OnlyL
is actually returned.- Parameters
-
-
a(…, M, M) array_like
-
Hermitian (symmetric if all elements are real), positive-definite input matrix.
-
- Returns
-
-
L(…, M, M) array_like
-
Upper or lower-triangular Cholesky factor of
a
. Returns a matrix object ifa
is a matrix object.
-
- Raises
-
- LinAlgError
-
If the decomposition fails, for example, if
a
is not positive-definite.
See also
-
scipy.linalg.cholesky
-
Similar function in SciPy.
-
scipy.linalg.cholesky_banded
-
Cholesky decompose a banded Hermitian positive-definite matrix.
-
scipy.linalg.cho_factor
-
Cholesky decomposition of a matrix, to use in
scipy.linalg.cho_solve
.
Notes
New in version 1.8.0.
Broadcasting rules apply, see the
numpy.linalg
documentation for details.The Cholesky decomposition is often used as a fast way of solving
(when
A
is both Hermitian/symmetric and positive-definite).First, we solve for in
and then for in
Examples
>>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[1.+0.j, 0.+0.j], [0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[1.+0.j, 0.-2.j], [0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[1.+0.j, 0.+0.j], [0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> np.linalg.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]])
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/generated/numpy.linalg.cholesky.html