numpy.random.noncentral_f
-
numpy.random.noncentral_f(dfnum, dfden, nonc, size=None)
-
Draw samples from the noncentral F distribution.
Samples are drawn from an F distribution with specified parameters,
dfnum
(degrees of freedom in numerator) anddfden
(degrees of freedom in denominator), where both parameters > 1.nonc
is the non-centrality parameter.Note
New code should use the
noncentral_f
method of adefault_rng()
instance instead; seerandom-quick-start
.- Parameters
-
-
dfnumfloat or array_like of floats
-
Numerator degrees of freedom, must be > 0.
Changed in version 1.14.0: Earlier NumPy versions required dfnum > 1.
-
dfdenfloat or array_like of floats
-
Denominator degrees of freedom, must be > 0.
-
noncfloat or array_like of floats
-
Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0.
-
sizeint or tuple of ints, optional
-
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn. If size isNone
(default), a single value is returned ifdfnum
,dfden
, andnonc
are all scalars. Otherwise,np.broadcast(dfnum, dfden, nonc).size
samples are drawn.
-
- Returns
-
-
outndarray or scalar
-
Drawn samples from the parameterized noncentral Fisher distribution.
-
See also
-
Generator.noncentral_f
-
which should be used for new code.
Notes
When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic.
References
-
1
-
Weisstein, Eric W. “Noncentral F-Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html
-
2
-
Wikipedia, “Noncentral F-distribution”, https://en.wikipedia.org/wiki/Noncentral_F-distribution
Examples
In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We’ll plot the two probability distributions for comparison.
>>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = np.random.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show()
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.19/reference/random/generated/numpy.random.noncentral_f.html