Working with text data
Text data types
New in version 1.0.0.
There are two ways to store text data in pandas:
object
-dtype NumPy array.StringDtype
extension type.
We recommend using StringDtype
to store text data.
Prior to pandas 1.0, object
dtype was the only option. This was unfortunate for many reasons:
You can accidentally store a mixture of strings and non-strings in an
object
dtype array. It’s better to have a dedicated dtype.object
dtype breaks dtype-specific operations likeDataFrame.select_dtypes()
. There isn’t a clear way to select just text while excluding non-text but still object-dtype columns.When reading code, the contents of an
object
dtype array is less clear than'string'
.
Currently, the performance of object
dtype arrays of strings and arrays.StringArray
are about the same. We expect future enhancements to significantly increase the performance and lower the memory overhead of StringArray
.
Warning
StringArray
is currently considered experimental. The implementation and parts of the API may change without warning.
For backwards-compatibility, object
dtype remains the default type we infer a list of strings to
In [1]: pd.Series(["a", "b", "c"])
Out[1]:
0 a
1 b
2 c
dtype: object
To explicitly request string
dtype, specify the dtype
In [2]: pd.Series(["a", "b", "c"], dtype="string")
Out[2]:
0 a
1 b
2 c
dtype: string
In [3]: pd.Series(["a", "b", "c"], dtype=pd.StringDtype())
Out[3]:
0 a
1 b
2 c
dtype: string
Or astype
after the Series
or DataFrame
is created
In [4]: s = pd.Series(["a", "b", "c"])
In [5]: s
Out[5]:
0 a
1 b
2 c
dtype: object
In [6]: s.astype("string")
Out[6]:
0 a
1 b
2 c
dtype: string
Changed in version 1.1.0.
You can also use StringDtype
/"string"
as the dtype on non-string data and it will be converted to string
dtype:
In [7]: s = pd.Series(["a", 2, np.nan], dtype="string")
In [8]: s
Out[8]:
0 a
1 2
2 <NA>
dtype: string
In [9]: type(s[1])
Out[9]: str
or convert from existing pandas data:
In [10]: s1 = pd.Series([1, 2, np.nan], dtype="Int64")
In [11]: s1
Out[11]:
0 1
1 2
2 <NA>
dtype: Int64
In [12]: s2 = s1.astype("string")
In [13]: s2
Out[13]:
0 1
1 2
2 <NA>
dtype: string
In [14]: type(s2[0])
Out[14]: str
Behavior differences
These are places where the behavior of StringDtype
objects differ from object
dtype
-
For
StringDtype
, string accessor methods that return numeric output will always return a nullable integer dtype, rather than either int or float dtype, depending on the presence of NA values. Methods returning boolean output will return a nullable boolean dtype.In [15]: s = pd.Series(["a", None, "b"], dtype="string") In [16]: s Out[16]: 0 a 1 <NA> 2 b dtype: string In [17]: s.str.count("a") Out[17]: 0 1 1 <NA> 2 0 dtype: Int64 In [18]: s.dropna().str.count("a") Out[18]: 0 1 2 0 dtype: Int64
Both outputs are
Int64
dtype. Compare that with object-dtypeIn [19]: s2 = pd.Series(["a", None, "b"], dtype="object") In [20]: s2.str.count("a") Out[20]: 0 1.0 1 NaN 2 0.0 dtype: float64 In [21]: s2.dropna().str.count("a") Out[21]: 0 1 2 0 dtype: int64
When NA values are present, the output dtype is float64. Similarly for methods returning boolean values.
In [22]: s.str.isdigit() Out[22]: 0 False 1 <NA> 2 False dtype: boolean In [23]: s.str.match("a") Out[23]: 0 True 1 <NA> 2 False dtype: boolean
Some string methods, like
Series.str.decode()
are not available onStringArray
becauseStringArray
only holds strings, not bytes.In comparison operations,
arrays.StringArray
andSeries
backed by aStringArray
will return an object withBooleanDtype
, rather than abool
dtype object. Missing values in aStringArray
will propagate in comparison operations, rather than always comparing unequal likenumpy.nan
.
Everything else that follows in the rest of this document applies equally to string
and object
dtype.
String methods
Series and Index are equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the str
attribute and generally have names matching the equivalent (scalar) built-in string methods:
In [24]: s = pd.Series(
....: ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string"
....: )
....:
In [25]: s.str.lower()
Out[25]:
0 a
1 b
2 c
3 aaba
4 baca
5 <NA>
6 caba
7 dog
8 cat
dtype: string
In [26]: s.str.upper()
Out[26]:
0 A
1 B
2 C
3 AABA
4 BACA
5 <NA>
6 CABA
7 DOG
8 CAT
dtype: string
In [27]: s.str.len()
Out[27]:
0 1
1 1
2 1
3 4
4 4
5 <NA>
6 4
7 3
8 3
dtype: Int64
In [28]: idx = pd.Index([" jack", "jill ", " jesse ", "frank"])
In [29]: idx.str.strip()
Out[29]: Index(['jack', 'jill', 'jesse', 'frank'], dtype='object')
In [30]: idx.str.lstrip()
Out[30]: Index(['jack', 'jill ', 'jesse ', 'frank'], dtype='object')
In [31]: idx.str.rstrip()
Out[31]: Index([' jack', 'jill', ' jesse', 'frank'], dtype='object')
The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:
In [32]: df = pd.DataFrame(
....: np.random.randn(3, 2), columns=[" Column A ", " Column B "], index=range(3)
....: )
....:
In [33]: df
Out[33]:
Column A Column B
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
Since df.columns
is an Index object, we can use the .str
accessor
In [34]: df.columns.str.strip()
Out[34]: Index(['Column A', 'Column B'], dtype='object')
In [35]: df.columns.str.lower()
Out[35]: Index([' column a ', ' column b '], dtype='object')
These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing whitespaces, lower casing all names, and replacing any remaining whitespaces with underscores:
In [36]: df.columns = df.columns.str.strip().str.lower().str.replace(" ", "_")
In [37]: df
Out[37]:
column_a column_b
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
Note
If you have a Series
where lots of elements are repeated (i.e. the number of unique elements in the Series
is a lot smaller than the length of the Series
), it can be faster to convert the original Series
to one of type category
and then use .str.<method>
or .dt.<property>
on that. The performance difference comes from the fact that, for Series
of type category
, the string operations are done on the .categories
and not on each element of the Series
.
Please note that a Series
of type category
with string .categories
has some limitations in comparison to Series
of type string (e.g. you can’t add strings to each other: s + " " + s
won’t work if s
is a Series
of type category
). Also, .str
methods which operate on elements of type list
are not available on such a Series
.
Warning
Before v.0.25.0, the .str
-accessor did only the most rudimentary type checks. Starting with v.0.25.0, the type of the Series is inferred and the allowed types (i.e. strings) are enforced more rigorously.
Generally speaking, the .str
accessor is intended to work only on strings. With very few exceptions, other uses are not supported, and may be disabled at a later point.
Splitting and replacing strings
Methods like split
return a Series of lists:
In [38]: s2 = pd.Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype="string")
In [39]: s2.str.split("_")
Out[39]:
0 [a, b, c]
1 [c, d, e]
2 <NA>
3 [f, g, h]
dtype: object
Elements in the split lists can be accessed using get
or []
notation:
In [40]: s2.str.split("_").str.get(1)
Out[40]:
0 b
1 d
2 <NA>
3 g
dtype: object
In [41]: s2.str.split("_").str[1]
Out[41]:
0 b
1 d
2 <NA>
3 g
dtype: object
It is easy to expand this to return a DataFrame using expand
.
In [42]: s2.str.split("_", expand=True)
Out[42]:
0 1 2
0 a b c
1 c d e
2 <NA> <NA> <NA>
3 f g h
When original Series
has StringDtype
, the output columns will all be StringDtype
as well.
It is also possible to limit the number of splits:
In [43]: s2.str.split("_", expand=True, n=1)
Out[43]:
0 1
0 a b_c
1 c d_e
2 <NA> <NA>
3 f g_h
rsplit
is similar to split
except it works in the reverse direction, i.e., from the end of the string to the beginning of the string:
In [44]: s2.str.rsplit("_", expand=True, n=1)
Out[44]:
0 1
0 a_b c
1 c_d e
2 <NA> <NA>
3 f_g h
replace
optionally uses regular expressions:
In [45]: s3 = pd.Series(
....: ["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
....: dtype="string",
....: )
....:
In [46]: s3
Out[46]:
0 A
1 B
2 C
3 Aaba
4 Baca
5
6 <NA>
7 CABA
8 dog
9 cat
dtype: string
In [47]: s3.str.replace("^.a|dog", "XX-XX ", case=False, regex=True)
Out[47]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6 <NA>
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: string
Warning
Some caution must be taken when dealing with regular expressions! The current behavior is to treat single character patterns as literal strings, even when regex
is set to True
. This behavior is deprecated and will be removed in a future version so that the regex
keyword is always respected.
Changed in version 1.2.0.
If you want literal replacement of a string (equivalent to str.replace()
), you can set the optional regex
parameter to False
, rather than escaping each character. In this case both pat
and repl
must be strings:
In [48]: dollars = pd.Series(["12", "-$10", "$10,000"], dtype="string")
# These lines are equivalent
In [49]: dollars.str.replace(r"-\$", "-", regex=True)
Out[49]:
0 12
1 -10
2 $10,000
dtype: string
In [50]: dollars.str.replace("-$", "-", regex=False)
Out[50]:
0 12
1 -10
2 $10,000
dtype: string
The replace
method can also take a callable as replacement. It is called on every pat
using re.sub()
. The callable should expect one positional argument (a regex object) and return a string.
# Reverse every lowercase alphabetic word
In [51]: pat = r"[a-z]+"
In [52]: def repl(m):
....: return m.group(0)[::-1]
....:
In [53]: pd.Series(["foo 123", "bar baz", np.nan], dtype="string").str.replace(
....: pat, repl, regex=True
....: )
....:
Out[53]:
0 oof 123
1 rab zab
2 <NA>
dtype: string
# Using regex groups
In [54]: pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)"
In [55]: def repl(m):
....: return m.group("two").swapcase()
....:
In [56]: pd.Series(["Foo Bar Baz", np.nan], dtype="string").str.replace(
....: pat, repl, regex=True
....: )
....:
Out[56]:
0 bAR
1 <NA>
dtype: string
The replace
method also accepts a compiled regular expression object from re.compile()
as a pattern. All flags should be included in the compiled regular expression object.
In [57]: import re
In [58]: regex_pat = re.compile(r"^.a|dog", flags=re.IGNORECASE)
In [59]: s3.str.replace(regex_pat, "XX-XX ", regex=True)
Out[59]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6 <NA>
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: string
Including a flags
argument when calling replace
with a compiled regular expression object will raise a ValueError
.
In [60]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)
---------------------------------------------------------------------------
ValueError: case and flags cannot be set when pat is a compiled regex
Concatenation
There are several ways to concatenate a Series
or Index
, either with itself or others, all based on cat()
, resp. Index.str.cat
.
Concatenating a single Series into a string
The content of a Series
(or Index
) can be concatenated:
In [61]: s = pd.Series(["a", "b", "c", "d"], dtype="string")
In [62]: s.str.cat(sep=",")
Out[62]: 'a,b,c,d'
If not specified, the keyword sep
for the separator defaults to the empty string, sep=''
:
In [63]: s.str.cat()
Out[63]: 'abcd'
By default, missing values are ignored. Using na_rep
, they can be given a representation:
In [64]: t = pd.Series(["a", "b", np.nan, "d"], dtype="string")
In [65]: t.str.cat(sep=",")
Out[65]: 'a,b,d'
In [66]: t.str.cat(sep=",", na_rep="-")
Out[66]: 'a,b,-,d'
Concatenating a Series and something list-like into a Series
The first argument to cat()
can be a list-like object, provided that it matches the length of the calling Series
(or Index
).
In [67]: s.str.cat(["A", "B", "C", "D"])
Out[67]:
0 aA
1 bB
2 cC
3 dD
dtype: string
Missing values on either side will result in missing values in the result as well, unless na_rep
is specified:
In [68]: s.str.cat(t)
Out[68]:
0 aa
1 bb
2 <NA>
3 dd
dtype: string
In [69]: s.str.cat(t, na_rep="-")
Out[69]:
0 aa
1 bb
2 c-
3 dd
dtype: string
Concatenating a Series and something array-like into a Series
The parameter others
can also be two-dimensional. In this case, the number or rows must match the lengths of the calling Series
(or Index
).
In [70]: d = pd.concat([t, s], axis=1)
In [71]: s
Out[71]:
0 a
1 b
2 c
3 d
dtype: string
In [72]: d
Out[72]:
0 1
0 a a
1 b b
2 <NA> c
3 d d
In [73]: s.str.cat(d, na_rep="-")
Out[73]:
0 aaa
1 bbb
2 c-c
3 ddd
dtype: string
Concatenating a Series and an indexed object into a Series, with alignment
For concatenation with a Series
or DataFrame
, it is possible to align the indexes before concatenation by setting the join
-keyword.
In [74]: u = pd.Series(["b", "d", "a", "c"], index=[1, 3, 0, 2], dtype="string")
In [75]: s
Out[75]:
0 a
1 b
2 c
3 d
dtype: string
In [76]: u
Out[76]:
1 b
3 d
0 a
2 c
dtype: string
In [77]: s.str.cat(u)
Out[77]:
0 aa
1 bb
2 cc
3 dd
dtype: string
In [78]: s.str.cat(u, join="left")
Out[78]:
0 aa
1 bb
2 cc
3 dd
dtype: string
Warning
If the join
keyword is not passed, the method cat()
will currently fall back to the behavior before version 0.23.0 (i.e. no alignment), but a FutureWarning
will be raised if any of the involved indexes differ, since this default will change to join='left'
in a future version.
The usual options are available for join
(one of 'left', 'outer', 'inner', 'right'
). In particular, alignment also means that the different lengths do not need to coincide anymore.
In [79]: v = pd.Series(["z", "a", "b", "d", "e"], index=[-1, 0, 1, 3, 4], dtype="string")
In [80]: s
Out[80]:
0 a
1 b
2 c
3 d
dtype: string
In [81]: v
Out[81]:
-1 z
0 a
1 b
3 d
4 e
dtype: string
In [82]: s.str.cat(v, join="left", na_rep="-")
Out[82]:
0 aa
1 bb
2 c-
3 dd
dtype: string
In [83]: s.str.cat(v, join="outer", na_rep="-")
Out[83]:
-1 -z
0 aa
1 bb
2 c-
3 dd
4 -e
dtype: string
The same alignment can be used when others
is a DataFrame
:
In [84]: f = d.loc[[3, 2, 1, 0], :]
In [85]: s
Out[85]:
0 a
1 b
2 c
3 d
dtype: string
In [86]: f
Out[86]:
0 1
3 d d
2 <NA> c
1 b b
0 a a
In [87]: s.str.cat(f, join="left", na_rep="-")
Out[87]:
0 aaa
1 bbb
2 c-c
3 ddd
dtype: string
Concatenating a Series and many objects into a Series
Several array-like items (specifically: Series
, Index
, and 1-dimensional variants of np.ndarray
) can be combined in a list-like container (including iterators, dict
-views, etc.).
In [88]: s
Out[88]:
0 a
1 b
2 c
3 d
dtype: string
In [89]: u
Out[89]:
1 b
3 d
0 a
2 c
dtype: string
In [90]: s.str.cat([u, u.to_numpy()], join="left")
Out[90]:
0 aab
1 bbd
2 cca
3 ddc
dtype: string
All elements without an index (e.g. np.ndarray
) within the passed list-like must match in length to the calling Series
(or Index
), but Series
and Index
may have arbitrary length (as long as alignment is not disabled with join=None
):
In [91]: v
Out[91]:
-1 z
0 a
1 b
3 d
4 e
dtype: string
In [92]: s.str.cat([v, u, u.to_numpy()], join="outer", na_rep="-")
Out[92]:
-1 -z--
0 aaab
1 bbbd
2 c-ca
3 dddc
4 -e--
dtype: string
If using join='right'
on a list-like of others
that contains different indexes, the union of these indexes will be used as the basis for the final concatenation:
In [93]: u.loc[[3]]
Out[93]:
3 d
dtype: string
In [94]: v.loc[[-1, 0]]
Out[94]:
-1 z
0 a
dtype: string
In [95]: s.str.cat([u.loc[[3]], v.loc[[-1, 0]]], join="right", na_rep="-")
Out[95]:
-1 --z
0 a-a
3 dd-
dtype: string
Indexing with .str
You can use []
notation to directly index by position locations. If you index past the end of the string, the result will be a NaN
.
In [96]: s = pd.Series(
....: ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string"
....: )
....:
In [97]: s.str[0]
Out[97]:
0 A
1 B
2 C
3 A
4 B
5 <NA>
6 C
7 d
8 c
dtype: string
In [98]: s.str[1]
Out[98]:
0 <NA>
1 <NA>
2 <NA>
3 a
4 a
5 <NA>
6 A
7 o
8 a
dtype: string
Extracting substrings
Extract first match in each subject (extract)
Warning
Before version 0.23, argument expand
of the extract
method defaulted to False
. When expand=False
, expand
returns a Series
, Index
, or DataFrame
, depending on the subject and regular expression pattern. When expand=True
, it always returns a DataFrame
, which is more consistent and less confusing from the perspective of a user. expand=True
has been the default since version 0.23.0.
The extract
method accepts a regular expression with at least one capture group.
Extracting a regular expression with more than one group returns a DataFrame with one column per group.
In [99]: pd.Series(
....: ["a1", "b2", "c3"],
....: dtype="string",
....: ).str.extract(r"([ab])(\d)", expand=False)
....:
Out[99]:
0 1
0 a 1
1 b 2
2 <NA> <NA>
Elements that do not match return a row filled with NaN
. Thus, a Series of messy strings can be “converted” into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating get()
to access tuples or re.match
objects. The dtype of the result is always object, even if no match is found and the result only contains NaN
.
Named groups like
In [100]: pd.Series(["a1", "b2", "c3"], dtype="string").str.extract(
.....: r"(?P<letter>[ab])(?P<digit>\d)", expand=False
.....: )
.....:
Out[100]:
letter digit
0 a 1
1 b 2
2 <NA> <NA>
and optional groups like
In [101]: pd.Series(
.....: ["a1", "b2", "3"],
.....: dtype="string",
.....: ).str.extract(r"([ab])?(\d)", expand=False)
.....:
Out[101]:
0 1
0 a 1
1 b 2
2 <NA> 3
can also be used. Note that any capture group names in the regular expression will be used for column names; otherwise capture group numbers will be used.
Extracting a regular expression with one group returns a DataFrame
with one column if expand=True
.
In [102]: pd.Series(["a1", "b2", "c3"], dtype="string").str.extract(r"[ab](\d)", expand=True)
Out[102]:
0
0 1
1 2
2 <NA>
It returns a Series if expand=False
.
In [103]: pd.Series(["a1", "b2", "c3"], dtype="string").str.extract(r"[ab](\d)", expand=False)
Out[103]:
0 1
1 2
2 <NA>
dtype: string
Calling on an Index
with a regex with exactly one capture group returns a DataFrame
with one column if expand=True
.
In [104]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"], dtype="string")
In [105]: s
Out[105]:
A11 a1
B22 b2
C33 c3
dtype: string
In [106]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Out[106]:
letter
0 A
1 B
2 C
It returns an Index
if expand=False
.
In [107]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[107]: Index(['A', 'B', 'C'], dtype='object', name='letter')
Calling on an Index
with a regex with more than one capture group returns a DataFrame
if expand=True
.
In [108]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
Out[108]:
letter 1
0 A 11
1 B 22
2 C 33
It raises ValueError
if expand=False
.
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index
The table below summarizes the behavior of extract(expand=False)
(input subject in first column, number of groups in regex in first row)
1 group | >1 group | |
Index | Index | ValueError |
Series | Series | DataFrame |
Extract all matches in each subject (extractall)
Unlike extract
(which returns only the first match),
In [109]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"], dtype="string")
In [110]: s
Out[110]:
A a1a2
B b1
C c1
dtype: string
In [111]: two_groups = "(?P<letter>[a-z])(?P<digit>[0-9])"
In [112]: s.str.extract(two_groups, expand=True)
Out[112]:
letter digit
A a 1
B b 1
C c 1
the extractall
method returns every match. The result of extractall
is always a DataFrame
with a MultiIndex
on its rows. The last level of the MultiIndex
is named match
and indicates the order in the subject.
In [113]: s.str.extractall(two_groups)
Out[113]:
letter digit
match
A 0 a 1
1 a 2
B 0 b 1
C 0 c 1
When each subject string in the Series has exactly one match,
In [114]: s = pd.Series(["a3", "b3", "c2"], dtype="string")
In [115]: s
Out[115]:
0 a3
1 b3
2 c2
dtype: string
then extractall(pat).xs(0, level='match')
gives the same result as extract(pat)
.
In [116]: extract_result = s.str.extract(two_groups, expand=True)
In [117]: extract_result
Out[117]:
letter digit
0 a 3
1 b 3
2 c 2
In [118]: extractall_result = s.str.extractall(two_groups)
In [119]: extractall_result
Out[119]:
letter digit
match
0 0 a 3
1 0 b 3
2 0 c 2
In [120]: extractall_result.xs(0, level="match")
Out[120]:
letter digit
0 a 3
1 b 3
2 c 2
Index
also supports .str.extractall
. It returns a DataFrame
which has the same result as a Series.str.extractall
with a default index (starts from 0).
In [121]: pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups)
Out[121]:
letter digit
match
0 0 a 1
1 a 2
1 0 b 1
2 0 c 1
In [122]: pd.Series(["a1a2", "b1", "c1"], dtype="string").str.extractall(two_groups)
Out[122]:
letter digit
match
0 0 a 1
1 a 2
1 0 b 1
2 0 c 1
Testing for strings that match or contain a pattern
You can check whether elements contain a pattern:
In [123]: pattern = r"[0-9][a-z]"
In [124]: pd.Series(
.....: ["1", "2", "3a", "3b", "03c", "4dx"],
.....: dtype="string",
.....: ).str.contains(pattern)
.....:
Out[124]:
0 False
1 False
2 True
3 True
4 True
5 True
dtype: boolean
Or whether elements match a pattern:
In [125]: pd.Series(
.....: ["1", "2", "3a", "3b", "03c", "4dx"],
.....: dtype="string",
.....: ).str.match(pattern)
.....:
Out[125]:
0 False
1 False
2 True
3 True
4 False
5 True
dtype: boolean
New in version 1.1.0.
In [126]: pd.Series(
.....: ["1", "2", "3a", "3b", "03c", "4dx"],
.....: dtype="string",
.....: ).str.fullmatch(pattern)
.....:
Out[126]:
0 False
1 False
2 True
3 True
4 False
5 False
dtype: boolean
Note
The distinction between match
, fullmatch
, and contains
is strictness: fullmatch
tests whether the entire string matches the regular expression; match
tests whether there is a match of the regular expression that begins at the first character of the string; and contains
tests whether there is a match of the regular expression at any position within the string.
The corresponding functions in the re
package for these three match modes are re.fullmatch, re.match, and re.search, respectively.
Methods like match
, fullmatch
, contains
, startswith
, and endswith
take an extra na
argument so missing values can be considered True or False:
In [127]: s4 = pd.Series(
.....: ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string"
.....: )
.....:
In [128]: s4.str.contains("A", na=False)
Out[128]:
0 True
1 False
2 False
3 True
4 False
5 False
6 True
7 False
8 False
dtype: boolean
Creating indicator variables
You can extract dummy variables from string columns. For example if they are separated by a '|'
:
In [129]: s = pd.Series(["a", "a|b", np.nan, "a|c"], dtype="string")
In [130]: s.str.get_dummies(sep="|")
Out[130]:
a b c
0 1 0 0
1 1 1 0
2 0 0 0
3 1 0 1
String Index
also supports get_dummies
which returns a MultiIndex
.
In [131]: idx = pd.Index(["a", "a|b", np.nan, "a|c"])
In [132]: idx.str.get_dummies(sep="|")
Out[132]:
MultiIndex([(1, 0, 0),
(1, 1, 0),
(0, 0, 0),
(1, 0, 1)],
names=['a', 'b', 'c'])
See also get_dummies()
.
Method summary
Method | Description |
---|---|
Concatenate strings | |
Split strings on delimiter | |
Split strings on delimiter working from the end of the string | |
Index into each element (retrieve i-th element) | |
Join strings in each element of the Series with passed separator | |
Split strings on the delimiter returning DataFrame of dummy variables | |
Return boolean array if each string contains pattern/regex | |
Replace occurrences of pattern/regex/string with some other string or the return value of a callable given the occurrence | |
Duplicate values ( | |
Add whitespace to left, right, or both sides of strings | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Split long strings into lines with length less than a given width | |
Slice each string in the Series | |
Replace slice in each string with passed value | |
Count occurrences of pattern | |
Equivalent to | |
Equivalent to | |
Compute list of all occurrences of pattern/regex for each string | |
Call | |
Call | |
Call | |
Compute string lengths | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Return Unicode normal form. Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to | |
Equivalent to |
© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/user_guide/text.html