Computational tools
Statistical functions
Percent change
Series
and DataFrame
have a method pct_change()
to compute the percent change over a given number of periods (using fill_method
to fill NA/null values before computing the percent change).
In [1]: ser = pd.Series(np.random.randn(8))
In [2]: ser.pct_change()
Out[2]:
0 NaN
1 -1.602976
2 4.334938
3 -0.247456
4 -2.067345
5 -1.142903
6 -1.688214
7 -9.759729
dtype: float64
In [3]: df = pd.DataFrame(np.random.randn(10, 4))
In [4]: df.pct_change(periods=3)
Out[4]:
0 1 2 3
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 -0.218320 -1.054001 1.987147 -0.510183
4 -0.439121 -1.816454 0.649715 -4.822809
5 -0.127833 -3.042065 -5.866604 -1.776977
6 -2.596833 -1.959538 -2.111697 -3.798900
7 -0.117826 -2.169058 0.036094 -0.067696
8 2.492606 -1.357320 -1.205802 -1.558697
9 -1.012977 2.324558 -1.003744 -0.371806
Covariance
Series.cov()
can be used to compute covariance between series (excluding missing values).
In [5]: s1 = pd.Series(np.random.randn(1000))
In [6]: s2 = pd.Series(np.random.randn(1000))
In [7]: s1.cov(s2)
Out[7]: 0.0006801088174310875
Analogously, DataFrame.cov()
to compute pairwise covariances among the series in the DataFrame, also excluding NA/null values.
Note
Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details.
In [8]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=["a", "b", "c", "d", "e"])
In [9]: frame.cov()
Out[9]:
a b c d e
a 1.000882 -0.003177 -0.002698 -0.006889 0.031912
b -0.003177 1.024721 0.000191 0.009212 0.000857
c -0.002698 0.000191 0.950735 -0.031743 -0.005087
d -0.006889 0.009212 -0.031743 1.002983 -0.047952
e 0.031912 0.000857 -0.005087 -0.047952 1.042487
DataFrame.cov
also supports an optional min_periods
keyword that specifies the required minimum number of observations for each column pair in order to have a valid result.
In [10]: frame = pd.DataFrame(np.random.randn(20, 3), columns=["a", "b", "c"])
In [11]: frame.loc[frame.index[:5], "a"] = np.nan
In [12]: frame.loc[frame.index[5:10], "b"] = np.nan
In [13]: frame.cov()
Out[13]:
a b c
a 1.123670 -0.412851 0.018169
b -0.412851 1.154141 0.305260
c 0.018169 0.305260 1.301149
In [14]: frame.cov(min_periods=12)
Out[14]:
a b c
a 1.123670 NaN 0.018169
b NaN 1.154141 0.305260
c 0.018169 0.305260 1.301149
Correlation
Correlation may be computed using the corr()
method. Using the method
parameter, several methods for computing correlations are provided:
Method name | Description |
---|---|
| Standard correlation coefficient |
| Kendall Tau correlation coefficient |
| Spearman rank correlation coefficient |
All of these are currently computed using pairwise complete observations. Wikipedia has articles covering the above correlation coefficients:
Note
Please see the caveats associated with this method of calculating correlation matrices in the covariance section.
In [15]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=["a", "b", "c", "d", "e"])
In [16]: frame.iloc[::2] = np.nan
# Series with Series
In [17]: frame["a"].corr(frame["b"])
Out[17]: 0.013479040400098775
In [18]: frame["a"].corr(frame["b"], method="spearman")
Out[18]: -0.007289885159540637
# Pairwise correlation of DataFrame columns
In [19]: frame.corr()
Out[19]:
a b c d e
a 1.000000 0.013479 -0.049269 -0.042239 -0.028525
b 0.013479 1.000000 -0.020433 -0.011139 0.005654
c -0.049269 -0.020433 1.000000 0.018587 -0.054269
d -0.042239 -0.011139 0.018587 1.000000 -0.017060
e -0.028525 0.005654 -0.054269 -0.017060 1.000000
Note that non-numeric columns will be automatically excluded from the correlation calculation.
Like cov
, corr
also supports the optional min_periods
keyword:
In [20]: frame = pd.DataFrame(np.random.randn(20, 3), columns=["a", "b", "c"])
In [21]: frame.loc[frame.index[:5], "a"] = np.nan
In [22]: frame.loc[frame.index[5:10], "b"] = np.nan
In [23]: frame.corr()
Out[23]:
a b c
a 1.000000 -0.121111 0.069544
b -0.121111 1.000000 0.051742
c 0.069544 0.051742 1.000000
In [24]: frame.corr(min_periods=12)
Out[24]:
a b c
a 1.000000 NaN 0.069544
b NaN 1.000000 0.051742
c 0.069544 0.051742 1.000000
The method
argument can also be a callable for a generic correlation calculation. In this case, it should be a single function that produces a single value from two ndarray inputs. Suppose we wanted to compute the correlation based on histogram intersection:
# histogram intersection
In [25]: def histogram_intersection(a, b):
....: return np.minimum(np.true_divide(a, a.sum()), np.true_divide(b, b.sum())).sum()
....:
In [26]: frame.corr(method=histogram_intersection)
Out[26]:
a b c
a 1.000000 -6.404882 -2.058431
b -6.404882 1.000000 -19.255743
c -2.058431 -19.255743 1.000000
A related method corrwith()
is implemented on DataFrame to compute the correlation between like-labeled Series contained in different DataFrame objects.
In [27]: index = ["a", "b", "c", "d", "e"]
In [28]: columns = ["one", "two", "three", "four"]
In [29]: df1 = pd.DataFrame(np.random.randn(5, 4), index=index, columns=columns)
In [30]: df2 = pd.DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns)
In [31]: df1.corrwith(df2)
Out[31]:
one -0.125501
two -0.493244
three 0.344056
four 0.004183
dtype: float64
In [32]: df2.corrwith(df1, axis=1)
Out[32]:
a -0.675817
b 0.458296
c 0.190809
d -0.186275
e NaN
dtype: float64
Data ranking
The rank()
method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:
In [33]: s = pd.Series(np.random.randn(5), index=list("abcde"))
In [34]: s["d"] = s["b"] # so there's a tie
In [35]: s.rank()
Out[35]:
a 5.0
b 2.5
c 1.0
d 2.5
e 4.0
dtype: float64
rank()
is also a DataFrame method and can rank either the rows (axis=0
) or the columns (axis=1
). NaN
values are excluded from the ranking.
In [36]: df = pd.DataFrame(np.random.randn(10, 6))
In [37]: df[4] = df[2][:5] # some ties
In [38]: df
Out[38]:
0 1 2 3 4 5
0 -0.904948 -1.163537 -1.457187 0.135463 -1.457187 0.294650
1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809
2 0.401965 1.460840 1.256057 1.308127 1.256057 0.876004
3 0.205954 0.369552 -0.669304 0.038378 -0.669304 1.140296
4 -0.477586 -0.730705 -1.129149 -0.601463 -1.129149 -0.211196
5 -1.092970 -0.689246 0.908114 0.204848 NaN 0.463347
6 0.376892 0.959292 0.095572 -0.593740 NaN -0.069180
7 -1.002601 1.957794 -0.120708 0.094214 NaN -1.467422
8 -0.547231 0.664402 -0.519424 -0.073254 NaN -1.263544
9 -0.250277 -0.237428 -1.056443 0.419477 NaN 1.375064
In [39]: df.rank(1)
Out[39]:
0 1 2 3 4 5
0 4.0 3.0 1.5 5.0 1.5 6.0
1 2.0 6.0 4.5 1.0 4.5 3.0
2 1.0 6.0 3.5 5.0 3.5 2.0
3 4.0 5.0 1.5 3.0 1.5 6.0
4 5.0 3.0 1.5 4.0 1.5 6.0
5 1.0 2.0 5.0 3.0 NaN 4.0
6 4.0 5.0 3.0 1.0 NaN 2.0
7 2.0 5.0 3.0 4.0 NaN 1.0
8 2.0 5.0 3.0 4.0 NaN 1.0
9 2.0 3.0 1.0 4.0 NaN 5.0
rank
optionally takes a parameter ascending
which by default is true; when false, data is reverse-ranked, with larger values assigned a smaller rank.
rank
supports different tie-breaking methods, specified with the method
parameter:
average
: average rank of tied group
min
: lowest rank in the group
max
: highest rank in the group
first
: ranks assigned in the order they appear in the array
Windowing functions
See the window operations user guide for an overview of windowing functions.
© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/user_guide/computation.html