pandas.DataFrame.product
- DataFrame.product(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)[source]
-
Return the product of the values over the requested axis.
- Parameters
-
- axis:{index (0), columns (1)}
-
Axis for the function to be applied on.
- skipna:bool, default True
-
Exclude NA/null values when computing the result.
- level:int or level name, default None
-
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_only:bool, default None
-
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- min_count:int, default 0
-
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA. - **kwargs
-
Additional keyword arguments to be passed to the function.
- Returns
-
- Series or DataFrame (if level specified)
See also
Series.sum
-
Return the sum.
Series.min
-
Return the minimum.
Series.max
-
Return the maximum.
Series.idxmin
-
Return the index of the minimum.
Series.idxmax
-
Return the index of the maximum.
DataFrame.sum
-
Return the sum over the requested axis.
DataFrame.min
-
Return the minimum over the requested axis.
DataFrame.max
-
Return the maximum over the requested axis.
DataFrame.idxmin
-
Return the index of the minimum over the requested axis.
DataFrame.idxmax
-
Return the index of the maximum over the requested axis.
Examples
By default, the product of an empty or all-NA Series is
1
>>> pd.Series([], dtype="float64").prod() 1.0
This can be controlled with the
min_count
parameter>>> pd.Series([], dtype="float64").prod(min_count=1) nan
Thanks to the
skipna
parameter,min_count
handles all-NA and empty series identically.>>> pd.Series([np.nan]).prod() 1.0
>>> pd.Series([np.nan]).prod(min_count=1) nan
© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/reference/api/pandas.DataFrame.product.html