pandas.DataFrame.expanding

DataFrame.expanding(min_periods=1, center=None, axis=0, method='single')[source]

Provide expanding transformations.

Parameters
min_periods:int, default 1

Minimum number of observations in window required to have a value (otherwise result is NA).

center:bool, default False

Set the labels at the center of the window.

axis:int or str, default 0
method:str {‘single’, ‘table’}, default ‘single’

Execute the rolling operation per single column or row ('single') or over the entire object ('table').

This argument is only implemented when specifying engine='numba' in the method call.

New in version 1.3.0.

Returns
a Window sub-classed for the particular operation

See also

rolling

Provides rolling window calculations.

ewm

Provides exponential weighted functions.

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

Examples

>>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]})
>>> df
     B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0
>>> df.expanding(2).sum()
     B
0  NaN
1  1.0
2  3.0
3  3.0
4  7.0

© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/reference/api/pandas.DataFrame.expanding.html