pandas.Index.searchsorted
- Index.searchsorted(value, side='left', sorter=None)[source]
-
Find indices where elements should be inserted to maintain order.
Find the indices into a sorted Index self such that, if the corresponding elements in value were inserted before the indices, the order of self would be preserved.
Note
The Index must be monotonically sorted, otherwise wrong locations will likely be returned. Pandas does not check this for you.
- Parameters
-
- value:array-like
-
Values to insert into self.
- side:{‘left’, ‘right’}, optional
-
If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of self).
- sorter:1-D array-like, optional
-
Optional array of integer indices that sort self into ascending order. They are typically the result of
np.argsort
.
- Returns
-
- int or array of int
-
A scalar or array of insertion points with the same shape as value.
See also
sort_values
-
Sort by the values along either axis.
numpy.searchsorted
-
Similar method from NumPy.
Notes
Binary search is used to find the required insertion points.
Examples
>>> ser = pd.Series([1, 2, 3]) >>> ser 0 1 1 2 2 3 dtype: int64
>>> ser.searchsorted(4) 3
>>> ser.searchsorted([0, 4]) array([0, 3])
>>> ser.searchsorted([1, 3], side='left') array([0, 2])
>>> ser.searchsorted([1, 3], side='right') array([1, 3])
>>> ser = pd.Series(pd.to_datetime(['3/11/2000', '3/12/2000', '3/13/2000'])) >>> ser 0 2000-03-11 1 2000-03-12 2 2000-03-13 dtype: datetime64[ns]
>>> ser.searchsorted('3/14/2000') 3
>>> ser = pd.Categorical( ... ['apple', 'bread', 'bread', 'cheese', 'milk'], ordered=True ... ) >>> ser ['apple', 'bread', 'bread', 'cheese', 'milk'] Categories (4, object): ['apple' < 'bread' < 'cheese' < 'milk']
>>> ser.searchsorted('bread') 1
>>> ser.searchsorted(['bread'], side='right') array([3])
If the values are not monotonically sorted, wrong locations may be returned:
>>> ser = pd.Series([2, 1, 3]) >>> ser 0 2 1 1 2 3 dtype: int64
>>> ser.searchsorted(1) 0 # wrong result, correct would be 1
© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/reference/api/pandas.Index.searchsorted.html