pandas.core.groupby.SeriesGroupBy.aggregate
- SeriesGroupBy.aggregate(func=None, *args, engine=None, engine_kwargs=None, **kwargs)[source]
-
Aggregate using one or more operations over the specified axis.
- Parameters
-
- func:function, str, list or dict
-
Function to use for aggregating the data. If a function, must either work when passed a Series or when passed to Series.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.sum, 'mean']
dict of axis labels -> functions, function names or list of such.
Can also accept a Numba JIT function with
engine='numba'
specified. Only passing a single function is supported with this engine.If the
'numba'
engine is chosen, the function must be a user defined function withvalues
andindex
as the first and second arguments respectively in the function signature. Each group’s index will be passed to the user defined function and optionally available for use.Changed in version 1.1.0.
- *args
-
Positional arguments to pass to func.
- engine:str, default None
-
'cython'
: Runs the function through C-extensions from cython.'numba'
: Runs the function through JIT compiled code from numba.None
: Defaults to'cython'
or globally settingcompute.use_numba
New in version 1.1.0.
- engine_kwargs:dict, default None
-
For
'cython'
engine, there are no acceptedengine_kwargs
For
'numba'
engine, the engine can acceptnopython
,nogil
andparallel
dictionary keys. The values must either beTrue
orFalse
. The defaultengine_kwargs
for the'numba'
engine is{'nopython': True, 'nogil': False, 'parallel': False}
and will be applied to the function
New in version 1.1.0.
- **kwargs
-
Keyword arguments to be passed into func.
- Returns
-
- Series
See also
Series.groupby.apply
-
Apply function func group-wise and combine the results together.
Series.groupby.transform
-
Aggregate using one or more operations over the specified axis.
Series.aggregate
-
Transforms the Series on each group based on the given function.
Notes
When using
engine='numba'
, there will be no “fall back” behavior internally. The group data and group index will be passed as numpy arrays to the JITed user defined function, and no alternative execution attempts will be tried.Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details.
Changed in version 1.3.0: The resulting dtype will reflect the return value of the passed
func
, see the examples below.Examples
>>> s = pd.Series([1, 2, 3, 4])
>>> s 0 1 1 2 2 3 3 4 dtype: int64
>>> s.groupby([1, 1, 2, 2]).min() 1 1 2 3 dtype: int64
>>> s.groupby([1, 1, 2, 2]).agg('min') 1 1 2 3 dtype: int64
>>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) min max 1 1 2 2 3 4
The output column names can be controlled by passing the desired column names and aggregations as keyword arguments.
>>> s.groupby([1, 1, 2, 2]).agg( ... minimum='min', ... maximum='max', ... ) minimum maximum 1 1 2 2 3 4
Changed in version 1.3.0: The resulting dtype will reflect the return value of the aggregating function.
>>> s.groupby([1, 1, 2, 2]).agg(lambda x: x.astype(float).min()) 1 1.0 2 3.0 dtype: float64
© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/reference/api/pandas.core.groupby.SeriesGroupBy.aggregate.html