pandas.core.resample.Resampler.aggregate
- Resampler.aggregate(func, *args, **kwargs)[source]
-
Aggregate using one or more operations over the specified axis.
- Parameters
-
- func:function, str, list or dict
-
Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.sum, 'mean']
dict of axis labels -> functions, function names or list of such.
- *args
-
Positional arguments to pass to func.
- **kwargs
-
Keyword arguments to pass to func.
- Returns
-
- scalar, Series or DataFrame
-
The return can be:
scalar : when Series.agg is called with single function
Series : when DataFrame.agg is called with a single function
DataFrame : when DataFrame.agg is called with several functions
Return scalar, Series or DataFrame.
See also
DataFrame.groupby.aggregate
-
Aggregate using callable, string, dict, or list of string/callables.
DataFrame.resample.transform
-
Transforms the Series on each group based on the given function.
DataFrame.aggregate
-
Aggregate using one or more operations over the specified axis.
Notes
agg is an alias for aggregate. Use the alias.
Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details.
A passed user-defined-function will be passed a Series for evaluation.
Examples
>>> s = pd.Series([1,2,3,4,5], index=pd.date_range('20130101', periods=5,freq='s')) 2013-01-01 00:00:00 1 2013-01-01 00:00:01 2 2013-01-01 00:00:02 3 2013-01-01 00:00:03 4 2013-01-01 00:00:04 5 Freq: S, dtype: int64
>>> r = s.resample('2s') DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left, label=left, convention=start]
>>> r.agg(np.sum) 2013-01-01 00:00:00 3 2013-01-01 00:00:02 7 2013-01-01 00:00:04 5 Freq: 2S, dtype: int64
>>> r.agg(['sum','mean','max']) sum mean max 2013-01-01 00:00:00 3 1.5 2 2013-01-01 00:00:02 7 3.5 4 2013-01-01 00:00:04 5 5.0 5
>>> r.agg({'result' : lambda x: x.mean() / x.std(), 'total' : np.sum}) total result 2013-01-01 00:00:00 3 2.121320 2013-01-01 00:00:02 7 4.949747 2013-01-01 00:00:04 5 NaN
© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/reference/api/pandas.core.resample.Resampler.aggregate.html