pandas.Series.compare

Series.compare(other, align_axis=1, keep_shape=False, keep_equal=False)[source]

Compare to another Series and show the differences.

New in version 1.1.0.

Parameters
other:Series

Object to compare with.

align_axis:{0 or ‘index’, 1 or ‘columns’}, default 1

Determine which axis to align the comparison on.

  • 0, or ‘index’:Resulting differences are stacked vertically

    with rows drawn alternately from self and other.

  • 1, or ‘columns’:Resulting differences are aligned horizontally

    with columns drawn alternately from self and other.

keep_shape:bool, default False

If true, all rows and columns are kept. Otherwise, only the ones with different values are kept.

keep_equal:bool, default False

If true, the result keeps values that are equal. Otherwise, equal values are shown as NaNs.

Returns
Series or DataFrame

If axis is 0 or ‘index’ the result will be a Series. The resulting index will be a MultiIndex with ‘self’ and ‘other’ stacked alternately at the inner level.

If axis is 1 or ‘columns’ the result will be a DataFrame. It will have two columns namely ‘self’ and ‘other’.

See also

DataFrame.compare

Compare with another DataFrame and show differences.

Notes

Matching NaNs will not appear as a difference.

Examples

>>> s1 = pd.Series(["a", "b", "c", "d", "e"])
>>> s2 = pd.Series(["a", "a", "c", "b", "e"])

Align the differences on columns

>>> s1.compare(s2)
  self other
1    b     a
3    d     b

Stack the differences on indices

>>> s1.compare(s2, align_axis=0)
1  self     b
   other    a
3  self     d
   other    b
dtype: object

Keep all original rows

>>> s1.compare(s2, keep_shape=True)
  self other
0  NaN   NaN
1    b     a
2  NaN   NaN
3    d     b
4  NaN   NaN

Keep all original rows and also all original values

>>> s1.compare(s2, keep_shape=True, keep_equal=True)
  self other
0    a     a
1    b     a
2    c     c
3    d     b
4    e     e

© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/reference/api/pandas.Series.compare.html