pandas.arrays.IntegerArray

class pandas.arrays.IntegerArray(values, mask, copy=False)[source]

Array of integer (optional missing) values.

Changed in version 1.0.0: Now uses pandas.NA as the missing value rather than numpy.nan.

Warning

IntegerArray is currently experimental, and its API or internal implementation may change without warning.

We represent an IntegerArray with 2 numpy arrays:

  • data: contains a numpy integer array of the appropriate dtype

  • mask: a boolean array holding a mask on the data, True is missing

To construct an IntegerArray from generic array-like input, use pandas.array() with one of the integer dtypes (see examples).

See Nullable integer data type for more.

Parameters
values:numpy.ndarray

A 1-d integer-dtype array.

mask:numpy.ndarray

A 1-d boolean-dtype array indicating missing values.

copy:bool, default False

Whether to copy the values and mask.

Returns
IntegerArray

Examples

Create an IntegerArray with pandas.array().

>>> int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype())
>>> int_array
<IntegerArray>
[1, <NA>, 3]
Length: 3, dtype: Int32

String aliases for the dtypes are also available. They are capitalized.

>>> pd.array([1, None, 3], dtype='Int32')
<IntegerArray>
[1, <NA>, 3]
Length: 3, dtype: Int32
>>> pd.array([1, None, 3], dtype='UInt16')
<IntegerArray>
[1, <NA>, 3]
Length: 3, dtype: UInt16

Attributes

None

Methods

None

© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/reference/api/pandas.arrays.IntegerArray.html