pandas.Index.duplicated
- Index.duplicated(keep='first')[source]
-
Indicate duplicate index values.
Duplicated values are indicated as
True
values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated.- Parameters
-
- keep:{‘first’, ‘last’, False}, default ‘first’
-
The value or values in a set of duplicates to mark as missing.
‘first’ : Mark duplicates as
True
except for the first occurrence.‘last’ : Mark duplicates as
True
except for the last occurrence.False
: Mark all duplicates asTrue
.
- Returns
-
- np.ndarray[bool]
See also
Series.duplicated
-
Equivalent method on pandas.Series.
DataFrame.duplicated
-
Equivalent method on pandas.DataFrame.
Index.drop_duplicates
-
Remove duplicate values from Index.
Examples
By default, for each set of duplicated values, the first occurrence is set to False and all others to True:
>>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True])
which is equivalent to
>>> idx.duplicated(keep='first') array([False, False, True, False, True])
By using ‘last’, the last occurrence of each set of duplicated values is set on False and all others on True:
>>> idx.duplicated(keep='last') array([ True, False, True, False, False])
By setting keep on
False
, all duplicates are True:>>> idx.duplicated(keep=False) array([ True, False, True, False, True])
© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/reference/api/pandas.Index.duplicated.html