pandas.wide_to_long
- pandas.wide_to_long(df, stubnames, i, j, sep='', suffix='\\d+')[source]
-
Wide panel to long format. Less flexible but more user-friendly than melt.
With stubnames [‘A’, ‘B’], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,…, B-suffix1, B-suffix2,… You specify what you want to call this suffix in the resulting long format with j (for example j=’year’)
Each row of these wide variables are assumed to be uniquely identified by i (can be a single column name or a list of column names)
All remaining variables in the data frame are left intact.
- Parameters
-
- df:DataFrame
-
The wide-format DataFrame.
- stubnames:str or list-like
-
The stub name(s). The wide format variables are assumed to start with the stub names.
- i:str or list-like
-
Column(s) to use as id variable(s).
- j:str
-
The name of the sub-observation variable. What you wish to name your suffix in the long format.
- sep:str, default “”
-
A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying sep=’-’.
- suffix:str, default ‘\d+’
-
A regular expression capturing the wanted suffixes. ‘\d+’ captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class ‘\D+’. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying suffix=’(!?one|two)’. When all suffixes are numeric, they are cast to int64/float64.
- Returns
-
- DataFrame
-
A DataFrame that contains each stub name as a variable, with new index (i, j).
See also
melt
-
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
pivot
-
Create a spreadsheet-style pivot table as a DataFrame.
DataFrame.pivot
-
Pivot without aggregation that can handle non-numeric data.
DataFrame.pivot_table
-
Generalization of pivot that can handle duplicate values for one index/column pair.
DataFrame.unstack
-
Pivot based on the index values instead of a column.
Notes
All extra variables are left untouched. This simply uses pandas.melt under the hood, but is hard-coded to “do the right thing” in a typical case.
Examples
>>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1
With multiple id columns
>>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age') >>> l ... ht famid birth age 1 1 1 2.8 2 3.4 2 1 2.9 2 3.8 3 1 2.2 2 2.9 2 1 1 2.0 2 3.2 2 1 1.8 2 2.8 3 1 1.9 2 2.4 3 1 1 2.2 2 3.3 2 1 2.3 2 3.4 3 1 2.1 2 2.9
Going from long back to wide just takes some creative use of unstack
>>> w = l.unstack() >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format) >>> w.reset_index() famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9
Less wieldy column names are also handled
>>> np.random.seed(0) >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3), ... 'A(weekly)-2011': np.random.rand(3), ... 'B(weekly)-2010': np.random.rand(3), ... 'B(weekly)-2011': np.random.rand(3), ... 'X' : np.random.randint(3, size=3)}) >>> df['id'] = df.index >>> df A(weekly)-2010 A(weekly)-2011 B(weekly)-2010 B(weekly)-2011 X id 0 0.548814 0.544883 0.437587 0.383442 0 0 1 0.715189 0.423655 0.891773 0.791725 1 1 2 0.602763 0.645894 0.963663 0.528895 1 2
>>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id', ... j='year', sep='-') ... X A(weekly) B(weekly) id year 0 2010 0 0.548814 0.437587 1 2010 1 0.715189 0.891773 2 2010 1 0.602763 0.963663 0 2011 0 0.544883 0.383442 1 2011 1 0.423655 0.791725 2 2011 1 0.645894 0.528895
If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long
>>> stubnames = sorted( ... set([match[0] for match in df.columns.str.findall( ... r'[A-B]\(.*\)').values if match != []]) ... ) >>> list(stubnames) ['A(weekly)', 'B(weekly)']
All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes.
>>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht_one ht_two 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9
>>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age', ... sep='_', suffix=r'\w+') >>> l ... ht famid birth age 1 1 one 2.8 two 3.4 2 one 2.9 two 3.8 3 one 2.2 two 2.9 2 1 one 2.0 two 3.2 2 one 1.8 two 2.8 3 one 1.9 two 2.4 3 1 one 2.2 two 3.3 2 one 2.3 two 3.4 3 one 2.1 two 2.9
© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/reference/api/pandas.wide_to_long.html