numpy.zeros_like
-
numpy.zeros_like(a, dtype=None, order='K', subok=True)
[source] -
Return an array of zeros with the same shape and type as a given array.
Parameters: -
a : array_like
-
The shape and data-type of
a
define these same attributes of the returned array. -
dtype : data-type, optional
-
Overrides the data type of the result.
New in version 1.6.0.
-
order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional
-
Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if
a
is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout ofa
as closely as possible.New in version 1.6.0.
-
subok : bool, optional.
-
If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True.
Returns: -
out : ndarray
-
Array of zeros with the same shape and type as
a
.
See also
-
empty_like
- Return an empty array with shape and type of input.
-
ones_like
- Return an array of ones with shape and type of input.
-
full_like
- Return a new array with shape of input filled with value.
-
zeros
- Return a new array setting values to zero.
Examples
>>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([[0, 1, 2], [3, 4, 5]]) >>> np.zeros_like(x) array([[0, 0, 0], [0, 0, 0]])
>>> y = np.arange(3, dtype=float) >>> y array([ 0., 1., 2.]) >>> np.zeros_like(y) array([ 0., 0., 0.])
-
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.15.4/reference/generated/numpy.zeros_like.html