numpy.polynomial.legendre.Legendre
-
class numpy.polynomial.legendre.Legendre(coef, domain=None, window=None)
[source] -
A Legendre series class.
The Legendre class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as well as the attributes and methods listed in the
ABCPolyBase
documentation.Parameters: -
coef : array_like
-
Legendre coefficients in order of increasing degree, i.e.,
(1, 2, 3)
gives1*P_0(x) + 2*P_1(x) + 3*P_2(x)
. -
domain : (2,) array_like, optional
-
Domain to use. The interval
[domain[0], domain[1]]
is mapped to the interval[window[0], window[1]]
by shifting and scaling. The default value is [-1, 1]. -
window : (2,) array_like, optional
-
Window, see
domain
for its use. The default value is [-1, 1].New in version 1.6.0.
Methods
__call__
(arg)Call self as a function. basis
(deg[, domain, window])Series basis polynomial of degree deg
.cast
(series[, domain, window])Convert series to series of this class. convert
([domain, kind, window])Convert series to a different kind and/or domain and/or window. copy
()Return a copy. cutdeg
(deg)Truncate series to the given degree. degree
()The degree of the series. deriv
([m])Differentiate. fit
(x, y, deg[, domain, rcond, full, w, window])Least squares fit to data. fromroots
(roots[, domain, window])Return series instance that has the specified roots. has_samecoef
(other)Check if coefficients match. has_samedomain
(other)Check if domains match. has_sametype
(other)Check if types match. has_samewindow
(other)Check if windows match. identity
([domain, window])Identity function. integ
([m, k, lbnd])Integrate. linspace
([n, domain])Return x, y values at equally spaced points in domain. mapparms
()Return the mapping parameters. roots
()Return the roots of the series polynomial. trim
([tol])Remove trailing coefficients truncate
(size)Truncate series to length size
. -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.15.4/reference/generated/numpy.polynomial.legendre.Legendre.html