numpy.isclose
-
numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
[source] -
Returns a boolean array where two arrays are element-wise equal within a tolerance.
The tolerance values are positive, typically very small numbers. The relative difference (
rtol
* abs(b
)) and the absolute differenceatol
are added together to compare against the absolute difference betweena
andb
.Warning
The default
atol
is not appropriate for comparing numbers that are much smaller than one (see Notes).Parameters: -
a, b : array_like
-
Input arrays to compare.
-
rtol : float
-
The relative tolerance parameter (see Notes).
-
atol : float
-
The absolute tolerance parameter (see Notes).
-
equal_nan : bool
-
Whether to compare NaN’s as equal. If True, NaN’s in
a
will be considered equal to NaN’s inb
in the output array.
Returns: -
y : array_like
-
Returns a boolean array of where
a
andb
are equal within the given tolerance. If botha
andb
are scalars, returns a single boolean value.
See also
Notes
New in version 1.7.0.
For finite values, isclose uses the following equation to test whether two floating point values are equivalent.
absolute(a
-b
) <= (atol
+rtol
* absolute(b
))Unlike the built-in
math.isclose
, the above equation is not symmetric ina
andb
– it assumesb
is the reference value – so thatisclose(a, b)
might be different fromisclose(b, a)
. Furthermore, the default value of atol is not zero, and is used to determine what small values should be considered close to zero. The default value is appropriate for expected values of order unity: if the expected values are significantly smaller than one, it can result in false positives.atol
should be carefully selected for the use case at hand. A zero value foratol
will result inFalse
if eithera
orb
is zero.Examples
>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8]) array([True, False]) >>> np.isclose([1e10,1e-8], [1.00001e10,1e-9]) array([True, True]) >>> np.isclose([1e10,1e-8], [1.0001e10,1e-9]) array([False, True]) >>> np.isclose([1.0, np.nan], [1.0, np.nan]) array([True, False]) >>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) array([True, True]) >>> np.isclose([1e-8, 1e-7], [0.0, 0.0]) array([ True, False], dtype=bool) >>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0) array([False, False], dtype=bool) >>> np.isclose([1e-10, 1e-10], [1e-20, 0.0]) array([ True, True], dtype=bool) >>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0) array([False, True], dtype=bool)
-
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.15.4/reference/generated/numpy.isclose.html