numpy.ufunc.reduceat
-
ufunc.reduceat(a, indices, axis=0, dtype=None, out=None)
-
Performs a (local) reduce with specified slices over a single axis.
For i in
range(len(indices))
,reduceat
computesufunc.reduce(a[indices[i]:indices[i+1]])
, which becomes the i-th generalized “row” parallel toaxis
in the final result (i.e., in a 2-D array, for example, ifaxis = 0
, it becomes the i-th row, but ifaxis = 1
, it becomes the i-th column). There are three exceptions to this:- when
i = len(indices) - 1
(so for the last index),indices[i+1] = a.shape[axis]
. - if
indices[i] >= indices[i + 1]
, the i-th generalized “row” is simplya[indices[i]]
. - if
indices[i] >= len(a)
orindices[i] < 0
, an error is raised.
The shape of the output depends on the size of
indices
, and may be larger thana
(this happens iflen(indices) > a.shape[axis]
).Parameters: -
a : array_like
-
The array to act on.
-
indices : array_like
-
Paired indices, comma separated (not colon), specifying slices to reduce.
-
axis : int, optional
-
The axis along which to apply the reduceat.
-
dtype : data-type code, optional
-
The type used to represent the intermediate results. Defaults to the data type of the output array if this is provided, or the data type of the input array if no output array is provided.
-
out : ndarray, None, or tuple of ndarray and None, optional
-
A location into which the result is stored. If not provided or
None
, a freshly-allocated array is returned. For consistency with ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.Changed in version 1.13.0: Tuples are allowed for keyword argument.
Returns: -
r : ndarray
-
The reduced values. If
out
was supplied,r
is a reference toout
.
Notes
A descriptive example:
If
a
is 1-D, the functionufunc.accumulate(a)
is the same asufunc.reduceat(a, indices)[::2]
whereindices
isrange(len(array) - 1)
with a zero placed in every other element:indices = zeros(2 * len(a) - 1)
,indices[1::2] = range(1, len(a))
.Don’t be fooled by this attribute’s name:
reduceat(a)
is not necessarily smaller thana
.Examples
To take the running sum of four successive values:
>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2] array([ 6, 10, 14, 18])
A 2-D example:
>>> x = np.linspace(0, 15, 16).reshape(4,4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [ 12., 13., 14., 15.]])
# reduce such that the result has the following five rows: # [row1 + row2 + row3] # [row4] # [row2] # [row3] # [row1 + row2 + row3 + row4]
>>> np.add.reduceat(x, [0, 3, 1, 2, 0]) array([[ 12., 15., 18., 21.], [ 12., 13., 14., 15.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [ 24., 28., 32., 36.]])
# reduce such that result has the following two columns: # [col1 * col2 * col3, col4]
>>> np.multiply.reduceat(x, [0, 3], 1) array([[ 0., 3.], [ 120., 7.], [ 720., 11.], [ 2184., 15.]])
- when
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.15.4/reference/generated/numpy.ufunc.reduceat.html