numpy.asarray
-
numpy.asarray(a, dtype=None, order=None)
[source] -
Convert the input to an array.
Parameters: -
a : array_like
-
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
-
dtype : data-type, optional
-
By default, the data-type is inferred from the input data.
-
order : {‘C’, ‘F’}, optional
-
Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’.
Returns: -
out : ndarray
-
Array interpretation of
a
. No copy is performed if the input is already an ndarray with matching dtype and order. Ifa
is a subclass of ndarray, a base class ndarray is returned.
See also
-
asanyarray
- Similar function which passes through subclasses.
-
ascontiguousarray
- Convert input to a contiguous array.
-
asfarray
- Convert input to a floating point ndarray.
-
asfortranarray
- Convert input to an ndarray with column-major memory order.
-
asarray_chkfinite
- Similar function which checks input for NaNs and Infs.
-
fromiter
- Create an array from an iterator.
-
fromfunction
- Construct an array by executing a function on grid positions.
Examples
Convert a list into an array:
>>> a = [1, 2] >>> np.asarray(a) array([1, 2])
Existing arrays are not copied:
>>> a = np.array([1, 2]) >>> np.asarray(a) is a True
If
dtype
is set, array is copied only if dtype does not match:>>> a = np.array([1, 2], dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False
Contrary to
asanyarray
, ndarray subclasses are not passed through:>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True
-
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.15.4/reference/generated/numpy.asarray.html