numpy.concatenate
-
numpy.concatenate((a1, a2, ...), axis=0, out=None)
-
Join a sequence of arrays along an existing axis.
Parameters: -
a1, a2, … : sequence of array_like
-
The arrays must have the same shape, except in the dimension corresponding to
axis
(the first, by default). -
axis : int, optional
-
The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0.
-
out : ndarray, optional
-
If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified.
Returns: -
res : ndarray
-
The concatenated array.
See also
-
ma.concatenate
- Concatenate function that preserves input masks.
-
array_split
- Split an array into multiple sub-arrays of equal or near-equal size.
-
split
- Split array into a list of multiple sub-arrays of equal size.
-
hsplit
- Split array into multiple sub-arrays horizontally (column wise)
-
vsplit
- Split array into multiple sub-arrays vertically (row wise)
-
dsplit
- Split array into multiple sub-arrays along the 3rd axis (depth).
-
stack
- Stack a sequence of arrays along a new axis.
-
hstack
- Stack arrays in sequence horizontally (column wise)
-
vstack
- Stack arrays in sequence vertically (row wise)
-
dstack
- Stack arrays in sequence depth wise (along third dimension)
Notes
When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected as input, use the ma.concatenate function from the masked array module instead.
Examples
>>> a = np.array([[1, 2], [3, 4]]) >>> b = np.array([[5, 6]]) >>> np.concatenate((a, b), axis=0) array([[1, 2], [3, 4], [5, 6]]) >>> np.concatenate((a, b.T), axis=1) array([[1, 2, 5], [3, 4, 6]]) >>> np.concatenate((a, b), axis=None) array([1, 2, 3, 4, 5, 6])
This function will not preserve masking of MaskedArray inputs.
>>> a = np.ma.arange(3) >>> a[1] = np.ma.masked >>> b = np.arange(2, 5) >>> a masked_array(data = [0 -- 2], mask = [False True False], fill_value = 999999) >>> b array([2, 3, 4]) >>> np.concatenate([a, b]) masked_array(data = [0 1 2 2 3 4], mask = False, fill_value = 999999) >>> np.ma.concatenate([a, b]) masked_array(data = [0 -- 2 2 3 4], mask = [False True False False False False], fill_value = 999999)
-
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.15.4/reference/generated/numpy.concatenate.html