numpy.ma.empty_like
-
numpy.ma.empty_like(prototype, dtype=None, order='K', subok=True) = <numpy.ma.core._convert2ma object>
-
Return a new array with the same shape and type as a given array.
Parameters: -
prototype : array_like
-
The shape and data-type of
prototype
define these same attributes of the returned array. -
dtype : data-type, optional
-
Overrides the data type of the result.
New in version 1.6.0.
-
order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional
-
Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if
prototype
is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout ofprototype
as closely as possible.New in version 1.6.0.
-
subok : bool, optional.
-
If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True.
Returns: -
out : ndarray
-
Array of uninitialized (arbitrary) data with the same shape and type as
prototype
.
See also
-
ones_like
- Return an array of ones with shape and type of input.
-
zeros_like
- Return an array of zeros with shape and type of input.
-
full_like
- Return a new array with shape of input filled with value.
-
empty
- Return a new uninitialized array.
Notes
This function does not initialize the returned array; to do that use
zeros_like
orones_like
instead. It may be marginally faster than the functions that do set the array values.Examples
>>> a = ([1,2,3], [4,5,6]) # a is array-like >>> np.empty_like(a) array([[-1073741821, -1073741821, 3], #random [ 0, 0, -1073741821]]) >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) >>> np.empty_like(a) array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
-
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.15.4/reference/generated/numpy.ma.empty_like.html