numpy.histogramdd
-
numpy.histogramdd(sample, bins=10, range=None, normed=None, weights=None, density=None)
[source] -
Compute the multidimensional histogram of some data.
Parameters: -
sample : (N, D) array, or (D, N) array_like
-
The data to be histogrammed.
Note the unusual interpretation of sample when an array_like:
- When an array, each row is a coordinate in a D-dimensional space - such as
histogramgramdd(np.array([p1, p2, p3]))
. - When an array_like, each element is the list of values for single coordinate - such as
histogramgramdd((X, Y, Z))
.
The first form should be preferred.
- When an array, each row is a coordinate in a D-dimensional space - such as
-
bins : sequence or int, optional
-
The bin specification:
- A sequence of arrays describing the bin edges along each dimension.
- The number of bins for each dimension (nx, ny, … =bins)
- The number of bins for all dimensions (nx=ny=…=bins).
-
range : sequence, optional
-
A sequence of length D, each an optional (lower, upper) tuple giving the outer bin edges to be used if the edges are not given explicitly in
bins
. An entry of None in the sequence results in the minimum and maximum values being used for the corresponding dimension. The default, None, is equivalent to passing a tuple of D None values. -
density : bool, optional
-
If False, the default, returns the number of samples in each bin. If True, returns the probability density function at the bin,
bin_count / sample_count / bin_volume
. -
normed : bool, optional
-
An alias for the density argument that behaves identically. To avoid confusion with the broken normed argument to
histogram
,density
should be preferred. -
weights : (N,) array_like, optional
-
An array of values
w_i
weighing each sample(x_i, y_i, z_i, …)
. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin.
Returns: -
H : ndarray
-
The multidimensional histogram of sample x. See normed and weights for the different possible semantics.
-
edges : list
-
A list of D arrays describing the bin edges for each dimension.
See also
-
histogram
- 1-D histogram
-
histogram2d
- 2-D histogram
Examples
>>> r = np.random.randn(100,3) >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) >>> H.shape, edges[0].size, edges[1].size, edges[2].size ((5, 8, 4), 6, 9, 5)
-
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.15.4/reference/generated/numpy.histogramdd.html