numpy.ma.allclose
-
numpy.ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)
[source] -
Returns True if two arrays are element-wise equal within a tolerance.
This function is equivalent to
allclose
except that masked values are treated as equal (default) or unequal, depending on themasked_equal
argument.Parameters: -
a, b : array_like
-
Input arrays to compare.
-
masked_equal : bool, optional
-
Whether masked values in
a
andb
are considered equal (True) or not (False). They are considered equal by default. -
rtol : float, optional
-
Relative tolerance. The relative difference is equal to
rtol * b
. Default is 1e-5. -
atol : float, optional
-
Absolute tolerance. The absolute difference is equal to
atol
. Default is 1e-8.
Returns: -
y : bool
-
Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned.
Notes
If the following equation is element-wise True, then
allclose
returns True:absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
Return True if all elements of
a
andb
are equal subject to given tolerances.Examples
>>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) >>> a masked_array(data = [10000000000.0 1e-07 --], mask = [False False True], fill_value = 1e+20) >>> b = ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1]) >>> ma.allclose(a, b) False
>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1]) >>> ma.allclose(a, b) True >>> ma.allclose(a, b, masked_equal=False) False
Masked values are not compared directly.
>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1]) >>> ma.allclose(a, b) True >>> ma.allclose(a, b, masked_equal=False) False
-
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.15.4/reference/generated/numpy.ma.allclose.html