numpy.apply_along_axis
-
numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
[source] -
Apply a function to 1-D slices along the given axis.
Execute
func1d(a, *args)
wherefunc1d
operates on 1-D arrays anda
is a 1-D slice ofarr
alongaxis
.This is equivalent to (but faster than) the following use of
ndindex
ands_
, which sets each ofii
,jj
, andkk
to a tuple of indices:Ni, Nk = a.shape[:axis], a.shape[axis+1:] for ii in ndindex(Ni): for kk in ndindex(Nk): f = func1d(arr[ii + s_[:,] + kk]) Nj = f.shape for jj in ndindex(Nj): out[ii + jj + kk] = f[jj]
Equivalently, eliminating the inner loop, this can be expressed as:
Ni, Nk = a.shape[:axis], a.shape[axis+1:] for ii in ndindex(Ni): for kk in ndindex(Nk): out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])
Parameters: -
func1d : function (M,) -> (Nj…)
-
This function should accept 1-D arrays. It is applied to 1-D slices of
arr
along the specified axis. -
axis : integer
-
Axis along which
arr
is sliced. -
arr : ndarray (Ni…, M, Nk…)
-
Input array.
-
args : any
-
Additional arguments to
func1d
. -
kwargs : any
-
Additional named arguments to
func1d
.New in version 1.9.0.
Returns: -
out : ndarray (Ni…, Nj…, Nk…)
-
The output array. The shape of
out
is identical to the shape ofarr
, except along theaxis
dimension. This axis is removed, and replaced with new dimensions equal to the shape of the return value offunc1d
. So iffunc1d
returns a scalarout
will have one fewer dimensions thanarr
.
See also
-
apply_over_axes
- Apply a function repeatedly over multiple axes.
Examples
>>> def my_func(a): ... """Average first and last element of a 1-D array""" ... return (a[0] + a[-1]) * 0.5 >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> np.apply_along_axis(my_func, 0, b) array([ 4., 5., 6.]) >>> np.apply_along_axis(my_func, 1, b) array([ 2., 5., 8.])
For a function that returns a 1D array, the number of dimensions in
outarr
is the same asarr
.>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]]) >>> np.apply_along_axis(sorted, 1, b) array([[1, 7, 8], [3, 4, 9], [2, 5, 6]])
For a function that returns a higher dimensional array, those dimensions are inserted in place of the
axis
dimension.>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> np.apply_along_axis(np.diag, -1, b) array([[[1, 0, 0], [0, 2, 0], [0, 0, 3]], [[4, 0, 0], [0, 5, 0], [0, 0, 6]], [[7, 0, 0], [0, 8, 0], [0, 0, 9]]])
-
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.15.4/reference/generated/numpy.apply_along_axis.html