pandas.Panel.reindex
-
Panel.reindex(*args, **kwargs)
[source] -
Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False
Parameters: items, major_axis, minor_axis : array-like, optional (should be specified using keywords)
New labels / index to conform to. Preferably an Index object to avoid duplicating data
method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional
method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.
- default: don’t fill gaps
- pad / ffill: propagate last valid observation forward to next valid
- backfill / bfill: use next valid observation to fill gap
- nearest: use nearest valid observations to fill gap
copy : boolean, default True
Return a new object, even if the passed indexes are the same
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level
fill_value : scalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any “compatible” value
limit : int, default None
Maximum number of consecutive elements to forward or backward fill
tolerance : optional
Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance
.Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type.
New in version 0.21.0: (list-like tolerance)
Returns: -
reindexed : Panel
Examples
DataFrame.reindex
supports two calling conventions(index=index_labels, columns=column_labels, ...)
(labels, axis={'index', 'columns'}, ...)
We highly recommend using keyword arguments to clarify your intent.
Create a dataframe with some fictional data.
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = pd.DataFrame({ ... 'http_status': [200,200,404,404,301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00
Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned
NaN
.>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index) http_status response_time Safari 404.0 0.07 Iceweasel NaN NaN Comodo Dragon NaN NaN IE10 404.0 0.08 Chrome 200.0 0.02
We can fill in the missing values by passing a value to the keyword
fill_value
. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keywordmethod
to fill theNaN
values.>>> df.reindex(new_index, fill_value=0) http_status response_time Safari 404 0.07 Iceweasel 0 0.00 Comodo Dragon 0 0.00 IE10 404 0.08 Chrome 200 0.02
>>> df.reindex(new_index, fill_value='missing') http_status response_time Safari 404 0.07 Iceweasel missing missing Comodo Dragon missing missing IE10 404 0.08 Chrome 200 0.02
We can also reindex the columns.
>>> df.reindex(columns=['http_status', 'user_agent']) http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN
Or we can use “axis-style” keyword arguments
>>> df.reindex(['http_status', 'user_agent'], axis="columns") http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN
To further illustrate the filling functionality in
reindex
, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]}, ... index=date_index) >>> df2 prices 2010-01-01 100 2010-01-02 101 2010-01-03 NaN 2010-01-04 100 2010-01-05 89 2010-01-06 88
Suppose we decide to expand the dataframe to cover a wider date range.
>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2) prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100 2010-01-02 101 2010-01-03 NaN 2010-01-04 100 2010-01-05 89 2010-01-06 88 2010-01-07 NaN
The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by default filled with
NaN
. If desired, we can fill in the missing values using one of several options.For example, to backpropagate the last valid value to fill the
NaN
values, passbfill
as an argument to themethod
keyword.>>> df2.reindex(date_index2, method='bfill') prices 2009-12-29 100 2009-12-30 100 2009-12-31 100 2010-01-01 100 2010-01-02 101 2010-01-03 NaN 2010-01-04 100 2010-01-05 89 2010-01-06 88 2010-01-07 NaN
Please note that the
NaN
value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in theNaN
values present in the original dataframe, use thefillna()
method.See the user guide for more.
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Panel.reindex.html