Cookbook
This is a repository for short and sweet examples and links for useful pandas recipes. We encourage users to add to this documentation.
Adding interesting links and/or inline examples to this section is a great First Pull Request.
Simplified, condensed, new-user friendly, in-line examples have been inserted where possible to augment the Stack-Overflow and GitHub links. Many of the links contain expanded information, above what the in-line examples offer.
Pandas (pd) and Numpy (np) are the only two abbreviated imported modules. The rest are kept explicitly imported for newer users.
These examples are written for Python 3. Minor tweaks might be necessary for earlier python versions.
Idioms
These are some neat pandas idioms
if-then/if-then-else on one column, and assignment to another one or more columns:
In [1]: df = pd.DataFrame( ...: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df ...: Out[1]: AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50
if-then…
An if-then on one column
In [2]: df.loc[df.AAA >= 5,'BBB'] = -1; df Out[2]: AAA BBB CCC 0 4 10 100 1 5 -1 50 2 6 -1 -30 3 7 -1 -50
An if-then with assignment to 2 columns:
In [3]: df.loc[df.AAA >= 5,['BBB','CCC']] = 555; df Out[3]: AAA BBB CCC 0 4 10 100 1 5 555 555 2 6 555 555 3 7 555 555
Add another line with different logic, to do the -else
In [4]: df.loc[df.AAA < 5,['BBB','CCC']] = 2000; df Out[4]: AAA BBB CCC 0 4 2000 2000 1 5 555 555 2 6 555 555 3 7 555 555
Or use pandas where after you’ve set up a mask
In [5]: df_mask = pd.DataFrame({'AAA' : [True] * 4, 'BBB' : [False] * 4,'CCC' : [True,False] * 2}) In [6]: df.where(df_mask,-1000) Out[6]: AAA BBB CCC 0 4 -1000 2000 1 5 -1000 -1000 2 6 -1000 555 3 7 -1000 -1000
if-then-else using numpy’s where()
In [7]: df = pd.DataFrame( ...: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df ...: Out[7]: AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 In [8]: df['logic'] = np.where(df['AAA'] > 5,'high','low'); df
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/cookbook.html