pandas.DataFrame.to_parquet

DataFrame.to_parquet(fname, engine='auto', compression='snappy', **kwargs) [source]

Write a DataFrame to the binary parquet format.

New in version 0.21.0.

This function writes the dataframe as a parquet file. You can choose different parquet backends, and have the option of compression. See the user guide for more details.

Parameters:

fname : str

String file path.

engine : {‘auto’, ‘pyarrow’, ‘fastparquet’}, default ‘auto’

Parquet library to use. If ‘auto’, then the option io.parquet.engine is used. The default io.parquet.engine behavior is to try ‘pyarrow’, falling back to ‘fastparquet’ if ‘pyarrow’ is unavailable.

compression : {‘snappy’, ‘gzip’, ‘brotli’, None}, default ‘snappy’

Name of the compression to use. Use None for no compression.

**kwargs

Additional arguments passed to the parquet library. See pandas io for more details.

See also

read_parquet
Read a parquet file.
DataFrame.to_csv
Write a csv file.
DataFrame.to_sql
Write to a sql table.
DataFrame.to_hdf
Write to hdf.

Notes

This function requires either the fastparquet or pyarrow library.

Examples

>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
>>> df.to_parquet('df.parquet.gzip', compression='gzip')
>>> pd.read_parquet('df.parquet.gzip')
   col1  col2
0     1     3
1     2     4

© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.to_parquet.html