MultiIndex / Advanced Indexing
This section covers indexing with a MultiIndex
and more advanced indexing features.
See the Indexing and Selecting Data for general indexing documentation.
Warning
Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment
and should be avoided. See Returning a View versus Copy.
See the cookbook for some advanced strategies.
Hierarchical indexing (MultiIndex)
Hierarchical / Multi-level indexing is very exciting as it opens the door to some quite sophisticated data analysis and manipulation, especially for working with higher dimensional data. In essence, it enables you to store and manipulate data with an arbitrary number of dimensions in lower dimensional data structures like Series (1d) and DataFrame (2d).
In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with all of the pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting and reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis.
See the cookbook for some advanced strategies.
Creating a MultiIndex (hierarchical index) object
The MultiIndex
object is the hierarchical analogue of the standard Index
object which typically stores the axis labels in pandas objects. You can think of MultiIndex
as an array of tuples where each tuple is unique. A MultiIndex
can be created from a list of arrays (using MultiIndex.from_arrays
), an array of tuples (using MultiIndex.from_tuples
), or a crossed set of iterables (using MultiIndex.from_product
). The Index
constructor will attempt to return a MultiIndex
when it is passed a list of tuples. The following examples demonstrate different ways to initialize MultiIndexes.
In [1]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ...: ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] ...: In [2]: tuples = list(zip(*arrays)) In [3]: tuples Out[3]: [('bar', 'one'), ('bar', 'two'), ('baz', 'one'), ('baz', 'two'), ('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')] In [4]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [5]: index Out[5]: MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']], labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]], names=['first', 'second']) In [6]: s = pd.Series(np.random.randn(8), index=index) In [7]: s Out[7]: first second bar one 0.469112 two -0.282863 baz one -1.509059 two -1.135632 foo one 1.212112 two -0.173215 qux one 0.119209 two -1.044236 dtype: float64
When you want every pairing of the elements in two iterables, it can be easier to use the MultiIndex.from_product
function:
In [8]: iterables = [['bar', 'baz', 'foo', 'qux'], ['one', 'two']] In [9]: pd.MultiIndex.from_product(iterables, names=['first', 'second']) Out[9]: MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']], labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]], names=['first', 'second'])
As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a MultiIndex automatically:
In [10]: arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']), ....: np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])] ....: In [11]: s = pd.Series(np.random.randn(8), index=arrays) In [12]: s Out[12]: bar one -0.861849 two -2.104569 baz one -0.494929 two 1.071804 foo one 0.721555 two -0.706771 qux one -1.039575 two 0.271860 dtype: float64 In [13]: df = pd.DataFrame(np.random.randn(8, 4), index=arrays) In [14]: df Out[14]: 0 1 2 3 bar one -0.424972 0.567020 0.276232 -1.087401 two -0.673690 0.113648 -1.478427 0.524988 baz one 0.404705 0.577046 -1.715002 -1.039268 two -0.370647 -1.157892 -1.344312 0.844885 foo one 1.075770 -0.109050 1.643563 -1.469388 two 0.357021 -0.674600 -1.776904 -0.968914 qux one -1.294524 0.413738 0.276662 -0.472035 two -0.013960 -0.362543 -0.006154 -0.923061
All of the MultiIndex
constructors accept a names
argument which stores string names for the levels themselves. If no names are provided, None
will be assigned:
In [15]: df.index.names Out[15]: FrozenList([None, None])
This index can back any axis of a pandas object, and the number of levels of the index is up to you:
In [16]: df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index) In [17]: df Out[17]: first bar baz foo qux second one two one two one two one two A 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299 -0.226169 B 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127 -1.436737 C -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466 -2.006747 In [18]: pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6])
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/advanced.html