pandas.api.types.union_categoricals
-
pandas.api.types.union_categoricals(to_union, sort_categories=False, ignore_order=False)
[source] -
Combine list-like of Categorical-like, unioning categories. All categories must have the same dtype.
New in version 0.19.0.
Parameters: to_union : list-like of Categorical, CategoricalIndex,
or Series with dtype=’category’
sort_categories : boolean, default False
If true, resulting categories will be lexsorted, otherwise they will be ordered as they appear in the data.
ignore_order: boolean, default False
If true, the ordered attribute of the Categoricals will be ignored. Results in an unordered categorical.
New in version 0.20.0.
Returns: -
result : Categorical
Raises: TypeError
- all inputs do not have the same dtype
- all inputs do not have the same ordered property
- all inputs are ordered and their categories are not identical
- sort_categories=True and Categoricals are ordered
ValueError
Empty list of categoricals passed
Notes
To learn more about categories, see link
Examples
>>> from pandas.api.types import union_categoricals
If you want to combine categoricals that do not necessarily have the same categories,
union_categoricals
will combine a list-like of categoricals. The new categories will be the union of the categories being combined.>>> a = pd.Categorical(["b", "c"]) >>> b = pd.Categorical(["a", "b"]) >>> union_categoricals([a, b]) [b, c, a, b] Categories (3, object): [b, c, a]
By default, the resulting categories will be ordered as they appear in the
categories
of the data. If you want the categories to be lexsorted, usesort_categories=True
argument.>>> union_categoricals([a, b], sort_categories=True) [b, c, a, b] Categories (3, object): [a, b, c]
union_categoricals
also works with the case of combining two categoricals of the same categories and order information (e.g. what you could alsoappend
for).>>> a = pd.Categorical(["a", "b"], ordered=True) >>> b = pd.Categorical(["a", "b", "a"], ordered=True) >>> union_categoricals([a, b]) [a, b, a, b, a] Categories (2, object): [a < b]
Raises
TypeError
because the categories are ordered and not identical.>>> a = pd.Categorical(["a", "b"], ordered=True) >>> b = pd.Categorical(["a", "b", "c"], ordered=True) >>> union_categoricals([a, b]) TypeError: to union ordered Categoricals, all categories must be the same
New in version 0.20.0
Ordered categoricals with different categories or orderings can be combined by using the
ignore_ordered=True
argument.>>> a = pd.Categorical(["a", "b", "c"], ordered=True) >>> b = pd.Categorical(["c", "b", "a"], ordered=True) >>> union_categoricals([a, b], ignore_order=True) [a, b, c, c, b, a] Categories (3, object): [a, b, c]
union_categoricals
also works with aCategoricalIndex
, orSeries
containing categorical data, but note that the resulting array will always be a plainCategorical
>>> a = pd.Series(["b", "c"], dtype='category') >>> b = pd.Series(["a", "b"], dtype='category') >>> union_categoricals([a, b]) [b, c, a, b] Categories (3, object): [b, c, a]
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.api.types.union_categoricals.html