tf.random_normal_initializer
       Initializer that generates tensors with a normal distribution.
 
tf.random_normal_initializer(
    mean=0.0, stddev=0.05, seed=None
)
  Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized.
 Examples:
 
def make_variables(k, initializer):
  return (tf.Variable(initializer(shape=[k], dtype=tf.float32)),
          tf.Variable(initializer(shape=[k, k], dtype=tf.float32)))
v1, v2 = make_variables(3,
                        tf.random_normal_initializer(mean=1., stddev=2.))
v1
<tf.Variable ... shape=(3,) ... numpy=array([...], dtype=float32)>
v2
<tf.Variable ... shape=(3, 3) ... numpy=
make_variables(4, tf.random_uniform_initializer(minval=-1., maxval=1.))
(<tf.Variable...shape=(4,) dtype=float32...>, <tf.Variable...shape=(4, 4) ...
  
 
 | Args | 
 
  mean  |   a python scalar or a scalar tensor. Mean of the random values to generate.  |  
  stddev  |   a python scalar or a scalar tensor. Standard deviation of the random values to generate.  |  
  seed  |   A Python integer. Used to create random seeds. See tf.random.set_seed for behavior.  |  
 
 Methods
 from_config
 View source
 
@classmethod
from_config(
    config
)
 Instantiates an initializer from a configuration dictionary.
 Example:
 initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
  
 
 | Args | 
 
  config  |   A Python dictionary. It will typically be the output of get_config.  |  
 
  
 
 | Returns | 
  |  An Initializer instance.  |  
 
 get_config
 View source
 
get_config()
 Returns the configuration of the initializer as a JSON-serializable dict.
  
 
 | Returns | 
  |  A JSON-serializable Python dict.  |  
 
 __call__
 View source
 
__call__(
    shape, dtype=tf.dtypes.float32
)
 Returns a tensor object initialized as specified by the initializer.
  
 
 | Args | 
 
  shape  |   Shape of the tensor.  |  
  dtype  |   Optional dtype of the tensor. Only floating point types are supported.  |  
 
  
 
 | Raises | 
 
  ValueError  |   If the dtype is not floating point  |