tf.keras.utils.to_categorical
       Converts a class vector (integers) to binary class matrix.
  
tf.keras.utils.to_categorical(
    y, num_classes=None, dtype='float32'
)
  E.g. for use with categorical_crossentropy.
  
 
 | Arguments | 
 
  y  |   class vector to be converted into a matrix (integers from 0 to num_classes).  |  
  num_classes  |   total number of classes. If None, this would be inferred as the (largest number in y) + 1.  |  
  dtype  |   The data type expected by the input. Default: 'float32'.  |  
 
  
 
 | Returns | 
  |  A binary matrix representation of the input. The classes axis is placed last.  |  
 
 Example:
 
a = tf.keras.utils.to_categorical([0, 1, 2, 3], num_classes=4)
a = tf.constant(a, shape=[4, 4])
print(a)
tf.Tensor(
  [[1. 0. 0. 0.]
   [0. 1. 0. 0.]
   [0. 0. 1. 0.]
   [0. 0. 0. 1.]], shape=(4, 4), dtype=float32)
 
b = tf.constant([.9, .04, .03, .03,
                 .3, .45, .15, .13,
                 .04, .01, .94, .05,
                 .12, .21, .5, .17],
                shape=[4, 4])
loss = tf.keras.backend.categorical_crossentropy(a, b)
print(np.around(loss, 5))
[0.10536 0.82807 0.1011  1.77196]
 
loss = tf.keras.backend.categorical_crossentropy(a, a)
print(np.around(loss, 5))
[0. 0. 0. 0.]
  
 
 | Raises | 
  |  Value Error: If input contains string value  |