tf.feature_column.make_parse_example_spec
| View source on GitHub | 
Creates parsing spec dictionary from input feature_columns.
tf.feature_column.make_parse_example_spec(
    feature_columns
)
  The returned dictionary can be used as arg 'features' in tf.io.parse_example.
Typical usage example:
# Define features and transformations
feature_a = tf.feature_column.categorical_column_with_vocabulary_file(...)
feature_b = tf.feature_column.numeric_column(...)
feature_c_bucketized = tf.feature_column.bucketized_column(
    tf.feature_column.numeric_column("feature_c"), ...)
feature_a_x_feature_c = tf.feature_column.crossed_column(
    columns=["feature_a", feature_c_bucketized], ...)
feature_columns = set(
    [feature_b, feature_c_bucketized, feature_a_x_feature_c])
features = tf.io.parse_example(
    serialized=serialized_examples,
    features=tf.feature_column.make_parse_example_spec(feature_columns))
 For the above example, make_parse_example_spec would return the dict:
{
    "feature_a": parsing_ops.VarLenFeature(tf.string),
    "feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32),
    "feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32)
}
  
| Args | |
|---|---|
| feature_columns | An iterable containing all feature columns. All items should be instances of classes derived from FeatureColumn. | 
| Returns | |
|---|---|
| A dict mapping each feature key to a FixedLenFeatureorVarLenFeaturevalue. | 
| Raises | |
|---|---|
| ValueError | If any of the given feature_columnsis not aFeatureColumninstance. | 
    © 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/feature_column/make_parse_example_spec