class Matrix::LUPDecomposition

Parent:
Object

For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a m-by-m permutation matrix P so that L*U = P*A. If m < n, then L is m-by-m and U is m-by-n.

The LUP decomposition with pivoting always exists, even if the matrix is singular, so the constructor will never fail. The primary use of the LU decomposition is in the solution of square systems of simultaneous linear equations. This will fail if singular? returns true.

Attributes

pivots[R]

Returns the pivoting indices

Public Class Methods

new(a) Show source
# File lib/matrix/lup_decomposition.rb, line 154
def initialize a
  raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix)
  # Use a "left-looking", dot-product, Crout/Doolittle algorithm.
  @lu = a.to_a
  @row_count = a.row_count
  @column_count = a.column_count
  @pivots = Array.new(@row_count)
  @row_count.times do |i|
     @pivots[i] = i
  end
  @pivot_sign = 1
  lu_col_j = Array.new(@row_count)

  # Outer loop.

  @column_count.times do |j|

    # Make a copy of the j-th column to localize references.

    @row_count.times do |i|
      lu_col_j[i] = @lu[i][j]
    end

    # Apply previous transformations.

    @row_count.times do |i|
      lu_row_i = @lu[i]

      # Most of the time is spent in the following dot product.

      kmax = [i, j].min
      s = 0
      kmax.times do |k|
        s += lu_row_i[k]*lu_col_j[k]
      end

      lu_row_i[j] = lu_col_j[i] -= s
    end

    # Find pivot and exchange if necessary.

    p = j
    (j+1).upto(@row_count-1) do |i|
      if (lu_col_j[i].abs > lu_col_j[p].abs)
        p = i
      end
    end
    if (p != j)
      @column_count.times do |k|
        t = @lu[p][k]; @lu[p][k] = @lu[j][k]; @lu[j][k] = t
      end
      k = @pivots[p]; @pivots[p] = @pivots[j]; @pivots[j] = k
      @pivot_sign = -@pivot_sign
    end

    # Compute multipliers.

    if (j < @row_count && @lu[j][j] != 0)
      (j+1).upto(@row_count-1) do |i|
        @lu[i][j] = @lu[i][j].quo(@lu[j][j])
      end
    end
  end
end

Public Instance Methods

det() Show source
# File lib/matrix/lup_decomposition.rb, line 79
def det
  if (@row_count != @column_count)
    Matrix.Raise Matrix::ErrDimensionMismatch
  end
  d = @pivot_sign
  @column_count.times do |j|
    d *= @lu[j][j]
  end
  d
end

Returns the determinant of A, calculated efficiently from the factorization.

Also aliased as: determinant
determinant()
Alias for: det
# File lib/matrix/lup_decomposition.rb, line 22
def l
  Matrix.build(@row_count, [@column_count, @row_count].min) do |i, j|
    if (i > j)
      @lu[i][j]
    elsif (i == j)
      1
    else
      0
    end
  end
end
# File lib/matrix/lup_decomposition.rb, line 48
def p
  rows = Array.new(@row_count){Array.new(@row_count, 0)}
  @pivots.each_with_index{|p, i| rows[i][p] = 1}
  Matrix.send :new, rows, @row_count
end

Returns the permutation matrix P

singular?() Show source
# File lib/matrix/lup_decomposition.rb, line 67
def singular? ()
  @column_count.times do |j|
    if (@lu[j][j] == 0)
      return true
    end
  end
  false
end

Returns true if U, and hence A, is singular.

solve(b) Show source
# File lib/matrix/lup_decomposition.rb, line 95
def solve b
  if (singular?)
    Matrix.Raise Matrix::ErrNotRegular, "Matrix is singular."
  end
  if b.is_a? Matrix
    if (b.row_count != @row_count)
      Matrix.Raise Matrix::ErrDimensionMismatch
    end

    # Copy right hand side with pivoting
    nx = b.column_count
    m = @pivots.map{|row| b.row(row).to_a}

    # Solve L*Y = P*b
    @column_count.times do |k|
      (k+1).upto(@column_count-1) do |i|
        nx.times do |j|
          m[i][j] -= m[k][j]*@lu[i][k]
        end
      end
    end
    # Solve U*m = Y
    (@column_count-1).downto(0) do |k|
      nx.times do |j|
        m[k][j] = m[k][j].quo(@lu[k][k])
      end
      k.times do |i|
        nx.times do |j|
          m[i][j] -= m[k][j]*@lu[i][k]
        end
      end
    end
    Matrix.send :new, m, nx
  else # same algorithm, specialized for simpler case of a vector
    b = convert_to_array(b)
    if (b.size != @row_count)
      Matrix.Raise Matrix::ErrDimensionMismatch
    end

    # Copy right hand side with pivoting
    m = b.values_at(*@pivots)

    # Solve L*Y = P*b
    @column_count.times do |k|
      (k+1).upto(@column_count-1) do |i|
        m[i] -= m[k]*@lu[i][k]
      end
    end
    # Solve U*m = Y
    (@column_count-1).downto(0) do |k|
      m[k] = m[k].quo(@lu[k][k])
      k.times do |i|
        m[i] -= m[k]*@lu[i][k]
      end
    end
    Vector.elements(m, false)
  end
end

Returns m so that A*m = b, or equivalently so that L*U*m = P*b b can be a Matrix or a Vector

to_a()
Alias for: to_ary
to_ary() Show source
# File lib/matrix/lup_decomposition.rb, line 56
def to_ary
  [l, u, p]
end

Returns L, U, P in an array

Also aliased as: to_a
# File lib/matrix/lup_decomposition.rb, line 36
def u
  Matrix.build([@column_count, @row_count].min, @column_count) do |i, j|
    if (i <= j)
      @lu[i][j]
    else
      0
    end
  end
end

Returns the upper triangular factor U

Ruby Core © 1993–2017 Yukihiro Matsumoto
Licensed under the Ruby License.
Ruby Standard Library © contributors
Licensed under their own licenses.