numpy.ma.masked_inside

numpy.ma.masked_inside(x, v1, v2, copy=True) [source]

Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (v1 <= x <= v2). The boundaries v1 and v2 can be given in either order.

See also

masked_where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
      mask = [False False  True  True False False],
      fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
      mask = [False False  True  True False False],
      fill_value=1e+20)

© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.ma.masked_inside.html