numpy.ma.mask_rows

numpy.ma.mask_rows(a, axis=None) [source]

Mask rows of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 0.

See also

mask_rowcols
Mask rows and/or columns of a 2D array.
masked_where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],
       [0, 1, 0],
       [0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
 [[0 0 0]
 [0 -- 0]
 [0 0 0]],
      mask =
 [[False False False]
 [False  True False]
 [False False False]],
      fill_value=999999)
>>> ma.mask_rows(a)
masked_array(data =
 [[0 0 0]
 [-- -- --]
 [0 0 0]],
      mask =
 [[False False False]
 [ True  True  True]
 [False False False]],
      fill_value=999999)

© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.ma.mask_rows.html