numpy.fft.rfftfreq
-
numpy.fft.rfftfreq(n, d=1.0)
[source] -
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).
The returned float array
f
contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.Given a window length
n
and a sample spacingd
:f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
Unlike
fftfreq
(but likescipy.fftpack.rfftfreq
) the Nyquist frequency component is considered to be positive.Parameters: n : int
Window length.
d : scalar, optional
Sample spacing (inverse of the sampling rate). Defaults to 1.
Returns: f : ndarray
Array of length
n//2 + 1
containing the sample frequencies.Examples
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) >>> fourier = np.fft.rfft(signal) >>> n = signal.size >>> sample_rate = 100 >>> freq = np.fft.fftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., 30., 40., -50., -40., -30., -20., -10.]) >>> freq = np.fft.rfftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., 30., 40., 50.])
© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.fft.rfftfreq.html