numpy.ma.count_masked

numpy.ma.count_masked(arr, axis=None) [source]

Count the number of masked elements along the given axis.

Parameters:

arr : array_like

An array with (possibly) masked elements.

axis : int, optional

Axis along which to count. If None (default), a flattened version of the array is used.

Returns:

count : int, ndarray

The total number of masked elements (axis=None) or the number of masked elements along each slice of the given axis.

See also

MaskedArray.count
Count non-masked elements.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(9).reshape((3,3))
>>> a = ma.array(a)
>>> a[1, 0] = ma.masked
>>> a[1, 2] = ma.masked
>>> a[2, 1] = ma.masked
>>> a
masked_array(data =
 [[0 1 2]
 [-- 4 --]
 [6 -- 8]],
      mask =
 [[False False False]
 [ True False  True]
 [False  True False]],
      fill_value=999999)
>>> ma.count_masked(a)
3

When the axis keyword is used an array is returned.

>>> ma.count_masked(a, axis=0)
array([1, 1, 1])
>>> ma.count_masked(a, axis=1)
array([0, 2, 1])

© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.ma.count_masked.html