numpy.logaddexp
-
numpy.logaddexp(x1, x2[, out]) = <ufunc 'logaddexp'>
-
Logarithm of the sum of exponentiations of the inputs.
Calculates
log(exp(x1) + exp(x2))
. This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion.Parameters: x1, x2 : array_like
Input values.
Returns: result : ndarray
Logarithm of
exp(x1) + exp(x2)
.See also
-
logaddexp2
- Logarithm of the sum of exponentiations of inputs in base 2.
Notes
New in version 1.3.0.
Examples
>>> prob1 = np.log(1e-50) >>> prob2 = np.log(2.5e-50) >>> prob12 = np.logaddexp(prob1, prob2) >>> prob12 -113.87649168120691 >>> np.exp(prob12) 3.5000000000000057e-50
-
© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.logaddexp.html