Module
logger
Module Summary
API module for Logger, the standard logging facility in Erlang/OTP.
Since
Module logger was introduced in OTP 21.0.
Description
This module implements the main API for logging in Erlang/OTP. To create a log event, use the API functions
or the log macros
, for example:
?LOG_ERROR("error happened because: ~p", [Reason]). % With macro logger:error("error happened because: ~p", [Reason]). % Without macro
To configure the Logger backend, use Kernel configuration parameters
or configuration functions
in the Logger API.
By default, the Kernel application installs one log handler at system start. This handler is named default
. It receives and processes standard log events produced by the Erlang runtime system, standard behaviours and different Erlang/OTP applications. The log events are by default printed to the terminal.
If you want your systems logs to be printed to a file instead, you must configure the default handler to do so. The simplest way is to include the following in your sys.config
:
[{kernel, [{logger, [{handler, default, logger_std_h, #{config => #{file => "path/to/file.log"}}}]}]}].
For more information about:
- the Logger facility in general, see the
User's Guide
. - how to configure Logger, see the
Configuration
section in the User's Guide. - the built-in handlers, see
logger_std_h
andlogger_disk_log_h
. - the built-in formatter, see
logger_formatter
. - built-in filters, see
logger_filters
.
Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce changes to the Logger API and functionality in patches following this release. These changes might or might not be backwards compatible with the initial version.
Data Types
filter() =
{fun((log_event(), filter_arg()) -> filter_return()),
filter_arg()}
A filter which can be installed as a handler filter, or as a primary filter in Logger.
filter_arg() = term()
The second argument to the filter fun.
filter_id() = atom()
A unique identifier for a filter.
filter_return() = stop | ignore | log_event()
The return value from the filter fun.
formatter_config() = #{atom() => term()}
Configuration data for the formatter. See logger_formatter(3)
for an example of a formatter implementation.
handler_config() =
#{id => handler_id(),
config => term(),
level => level() | all | none,
module => module(),
filter_default => log | stop,
filters => [{filter_id(), filter()}],
formatter => {module(), formatter_config()}}
Handler configuration data for Logger. The following default values apply:
level => all
filter_default => log
filters => []
-
formatter => {logger_formatter, DefaultFormatterConfig
}
In addition to these, the following fields are automatically inserted by Logger, values taken from the two first parameters to add_handler/3
:
id => HandlerId
module => Module
These are read-only and cannot be changed in runtime.
Handler specific configuration data is inserted by the handler callback itself, in a sub structure associated with the field named config
. See the logger_std_h(3)
and logger_disk_log_h(3)
manual pages for information about the specific configuration for these handlers.
See the logger_formatter(3)
manual page for information about the default configuration for this formatter.
handler_id() = atom()
A unique identifier for a handler instance.
level() =
emergency | alert | critical | error | warning | notice |
info | debug
The severity level for the message to be logged.
log_event() =
#{level := level(),
msg :=
{io:format(), [term()]} |
{report, report()} |
{string, unicode:chardata()},
meta := metadata()}
metadata() =
#{pid => pid(),
gl => pid(),
time => timestamp(),
mfa => {module(), atom(), integer() >= 0},
file => file:filename(),
line => integer() >= 0,
domain => [atom()],
report_cb => report_cb(),
atom() => term()}
Metadata for the log event.
Logger adds the following metadata to each log event:
pid => self()
gl => group_leader()
time => logger:timestamp()
When a log macro is used, Logger also inserts location information:
mfa => {?MODULE, ?FUNCTION_NAME, ?FUNCTION_ARITY}
file => ?FILE
line => ?LINE
You can add custom metadata, either by:
- specifying a map as the last parameter to any of the log macros or the logger API functions.
- setting process metadata with
set_process_metadata/1
orupdate_process_metadata/1
. - setting primary metadata with
set_primary_config/1
or through the kernel configuration parameterlogger_metadata
When adding custom metadata, make sure not to use any of the keys mentioned above as that may cause a lot of confusion about the log events.
Logger merges all the metadata maps before forwarding the log event to the handlers. If the same keys occur, values from the log call overwrite process metadata, which overwrites the primary metadata, which in turn overwrite values set by Logger.
The following custom metadata keys have special meaning:
domain
-
The value associated with this key is used by filters for grouping log events originating from, for example, specific functional areas. See
logger_filters:domain/2
for a description of how this field can be used. report_cb
-
If the log message is specified as a
report()
, thereport_cb
key can be associated with a fun (report callback) that converts the report to a format string and arguments, or directly to a string. See the type definition ofreport_cb()
, and sectionLog Message
in the User's Guide for more information about report callbacks.
msg_fun() =
fun((term()) ->
msg_fun_return() | {msg_fun_return(), metadata()})
msg_fun_return() =
{io:format(), [term()]} |
report() |
unicode:chardata() |
ignore
olp_config() =
#{sync_mode_qlen => integer() >= 0,
drop_mode_qlen => integer() >= 1,
flush_qlen => integer() >= 1,
burst_limit_enable => boolean(),
burst_limit_max_count => integer() >= 1,
burst_limit_window_time => integer() >= 1,
overload_kill_enable => boolean(),
overload_kill_qlen => integer() >= 1,
overload_kill_mem_size => integer() >= 1,
overload_kill_restart_after => integer() >= 0 | infinity}
primary_config() =
#{level => level() | all | none,
metadata => metadata(),
filter_default => log | stop,
filters => [{filter_id(), filter()}]}
Primary configuration data for Logger. The following default values apply:
level => info
filter_default => log
filters => []
report() = map() | [{atom(), term()}]
report_cb() =
fun((report()) -> {io:format(), [term()]}) |
fun((report(), report_cb_config()) -> unicode:chardata())
A fun which converts a report()
to a format string and arguments, or directly to a string. See section Log Message
in the User's Guide for more information.
report_cb_config() =
#{depth := integer() >= 1 | unlimited,
chars_limit := integer() >= 1 | unlimited,
single_line := boolean()}
timestamp() = integer()
A timestamp produced with logger:timestamp()
.
Macros
The following macros are defined in logger.hrl
, which is included in a module with the directive
-include_lib("kernel/include/logger.hrl").
?LOG_EMERGENCY(StringOrReport[,Metadata])
?LOG_EMERGENCY(FunOrFormat,Args[,Metadata])
?LOG_ALERT(StringOrReport[,Metadata])
?LOG_ALERT(FunOrFormat,Args[,Metadata])
?LOG_CRITICAL(StringOrReport[,Metadata])
?LOG_CRITICAL(FunOrFormat,Args[,Metadata])
?LOG_ERROR(StringOrReport[,Metadata])
?LOG_ERROR(FunOrFormat,Args[,Metadata])
?LOG_WARNING(StringOrReport[,Metadata])
?LOG_WARNING(FunOrFormat,Args[,Metadata])
?LOG_NOTICE(StringOrReport[,Metadata])
?LOG_NOTICE(FunOrFormat,Args[,Metadata])
?LOG_INFO(StringOrReport[,Metadata])
?LOG_INFO(FunOrFormat,Args[,Metadata])
?LOG_DEBUG(StringOrReport[,Metadata])
?LOG_DEBUG(FunOrFormat,Args[,Metadata])
?LOG(Level,StringOrReport[,Metadata])
?LOG(Level,FunOrFormat,Args[,Metadata])
All macros expand to a call to Logger, where Level
is taken from the macro name, or from the first argument in the case of the ?LOG
macro. Location data is added to the metadata as described under the metadata()
type definition.
The call is wrapped in a case statement and will be evaluated only if Level
is equal to or below the configured log level.
Logging API functions
Exports
emergency(StringOrReport[,Metadata]) | OTP 21.0 |
emergency(Format,Args[,Metadata]) | OTP 21.0 |
emergency(Fun,FunArgs[,Metadata]) | OTP 21.0 |
Equivalent to log(emergency,...)
.
alert(StringOrReport[,Metadata]) | OTP 21.0 |
alert(Format,Args[,Metadata]) | OTP 21.0 |
alert(Fun,FunArgs[,Metadata]) | OTP 21.0 |
Equivalent to log(alert,...)
.
critical(StringOrReport[,Metadata]) | OTP 21.0 |
critical(Format,Args[,Metadata]) | OTP 21.0 |
critical(Fun,FunArgs[,Metadata]) | OTP 21.0 |
Equivalent to log(critical,...)
.
error(StringOrReport[,Metadata]) | OTP 21.0 |
error(Format,Args[,Metadata]) | OTP 21.0 |
error(Fun,FunArgs[,Metadata]) | OTP 21.0 |
Equivalent to log(error,...)
.
warning(StringOrReport[,Metadata]) | OTP 21.0 |
warning(Format,Args[,Metadata]) | OTP 21.0 |
warning(Fun,FunArgs[,Metadata]) | OTP 21.0 |
Equivalent to log(warning,...)
.
notice(StringOrReport[,Metadata]) | OTP 21.0 |
notice(Format,Args[,Metadata]) | OTP 21.0 |
notice(Fun,FunArgs[,Metadata]) | OTP 21.0 |
Equivalent to log(notice,...)
.
info(StringOrReport[,Metadata]) | OTP 21.0 |
info(Format,Args[,Metadata]) | OTP 21.0 |
info(Fun,FunArgs[,Metadata]) | OTP 21.0 |
Equivalent to log(info,...)
.
debug(StringOrReport[,Metadata]) | OTP 21.0 |
debug(Format,Args[,Metadata]) | OTP 21.0 |
debug(Fun,FunArgs[,Metadata]) | OTP 21.0 |
Equivalent to log(debug,...)
.
log(Level, StringOrReport) -> ok | OTP 21.0 |
log(Level, StringOrReport, Metadata) -> ok | OTP 21.0 |
log(Level, Format, Args) -> ok | OTP 21.0 |
log(Level, Fun, FunArgs) -> ok | OTP 21.0 |
log(Level, Format, Args, Metadata) -> ok | OTP 21.0 |
log(Level, Fun, FunArgs, Metadata) -> ok | OTP 21.0 |
Types
Create a log event at the given log level
, with the given message
to be logged and metadata
. Examples:
%% A plain string logger:log(info, "Hello World"). %% A plain string with metadata logger:log(debug, "Hello World", #{ meta => data }). %% A format string with arguments logger:log(warning, "The roof is on ~ts",[Cause]). %% A report logger:log(warning, #{ what => roof, cause => Cause }).
The message and metadata can either be given directly in the arguments, or returned from a fun. Passing a fun instead of the message/metadata directly is useful in scenarios when the message/metadata is very expensive to compute. This is because the fun is only evaluted when the message/metadata is actually needed, which may be not at all if the log event is not to be logged. Examples:
%% A plain string with expensive metadata logger:info(fun([]) -> {"Hello World", #{ meta => expensive() }} end,[]). %% An expensive report logger:debug(fun(What) -> #{ what => What, cause => expensive() } end,roof). %% A plain string with expensive metadata and normal metadata logger:debug(fun([]) -> {"Hello World", #{ meta => expensive() }} end,[], #{ meta => data }).
When metadata is given both as an argument and returned from the fun they are merged. If equal keys exists the values are taken from the metadata returned by the fun.
Configuration API functions
Exports
add_handler(HandlerId, Module, Config) -> ok | {error, term()} | OTP 21.0 |
Types
Add a handler with the given configuration.
HandlerId
is a unique identifier which must be used in all subsequent calls referring to this handler.
add_handler_filter(HandlerId, FilterId, Filter) -> ok | {error, term()} | OTP 21.0 |
Types
Add a filter to the specified handler.
The filter fun is called with the log event as the first parameter, and the specified filter_args()
as the second parameter.
The return value of the fun specifies if a log event is to be discarded or forwarded to the handler callback:
log_event()
-
The filter passed. The next handler filter, if any, is applied. If no more filters exist for this handler, the log event is forwarded to the handler callback.
stop
-
The filter did not pass, and the log event is immediately discarded.
ignore
-
The filter has no knowledge of the log event. The next handler filter, if any, is applied. If no more filters exist for this handler, the value of the
filter_default
configuration parameter for the handler specifies if the log event shall be discarded or forwarded to the handler callback.
See section Filters
in the User's Guide for more information about filters.
Some built-in filters exist. These are defined in logger_filters(3)
.
add_handlers(Application) -> ok | {error, term()} | OTP 21.0 |
Types
Reads the application configuration parameter logger
and calls add_handlers/1
with its contents.
add_handlers(HandlerConfig) -> ok | {error, term()} | OTP 21.0 |
Types
This function should be used by custom Logger handlers to make configuration consistent no matter which handler the system uses. Normal usage is to add a call to logger:add_handlers/1
just after the processes that the handler needs are started, and pass the application's logger
configuration as the argument. For example:
-behaviour(application). start(_, []) -> case supervisor:start_link({local, my_sup}, my_sup, []) of {ok, Pid} -> ok = logger:add_handlers(my_app), {ok, Pid, []}; Error -> Error end.
This reads the logger
configuration parameter from the my_app
application and starts the configured handlers. The contents of the configuration use the same rules as the logger handler configuration
.
If the handler is meant to replace the default handler, the Kernel's default handler have to be disabled before the new handler is added. A sys.config
file that disables the Kernel handler and adds a custom handler could look like this:
[{kernel, [{logger, %% Disable the default Kernel handler [{handler, default, undefined}]}]}, {my_app, [{logger, %% Enable this handler as the default [{handler, default, my_handler, #{}}]}]}].
add_primary_filter(FilterId, Filter) -> ok | {error, term()} | OTP 21.0 |
Types
Add a primary filter to Logger.
The filter fun is called with the log event as the first parameter, and the specified filter_args()
as the second parameter.
The return value of the fun specifies if a log event is to be discarded or forwarded to the handlers:
log_event()
-
The filter passed. The next primary filter, if any, is applied. If no more primary filters exist, the log event is forwarded to the handler part of Logger, where handler filters are applied.
stop
-
The filter did not pass, and the log event is immediately discarded.
ignore
-
The filter has no knowledge of the log event. The next primary filter, if any, is applied. If no more primary filters exist, the value of the primary
filter_default
configuration parameter specifies if the log event shall be discarded or forwarded to the handler part.
See section Filters
in the User's Guide for more information about filters.
Some built-in filters exist. These are defined in logger_filters(3)
.
get_config() -> #{primary => primary_config() ,handlers => [ handler_config() ],proxy => olp_config() ,module_levels => [{module(), level() | all | none}]} | OTP 21.0 |
Look up all current Logger configuration, including primary, handler, and proxy configuration, and module level settings.
get_handler_config() -> [Config] | OTP 21.0 |
Types
Look up the current configuration for all handlers.
get_handler_config(HandlerId) -> {ok, Config} | {error, term()} | OTP 21.0 |
Types
Look up the current configuration for the given handler.
get_handler_ids() -> [HandlerId] | OTP 21.0 |
Types
Look up the identities for all installed handlers.
get_primary_config() -> Config | OTP 21.0 |
Types
Look up the current primary configuration for Logger.
get_proxy_config() -> Config | OTP 21.3 |
Types
Look up the current configuration for the Logger proxy.
For more information about the proxy, see section Logger Proxy
in the Kernel User's Guide.
get_module_level() -> [{Module, Level}] | OTP 21.0 |
Types
Look up all current module levels. Returns a list containing one {Module,Level}
element for each module for which the module level was previously set with set_module_level/2
.
get_module_level(Modules) -> [{Module, Level}] | OTP 21.0 |
Types
Look up the current level for the given modules. Returns a list containing one {Module,Level}
element for each of the given modules for which the module level was previously set with set_module_level/2
.
get_process_metadata() -> Meta | undefined | OTP 21.0 |
Types
Retrieve data set with set_process_metadata/1
or update_process_metadata/1
.
i() -> ok | OTP 21.3 |
i(What) -> ok | OTP 21.3 |
Types
Pretty print the Logger configuration.
remove_handler(HandlerId) -> ok | {error, term()} | OTP 21.0 |
Types
Remove the handler identified by HandlerId
.
remove_handler_filter(HandlerId, FilterId) -> ok | {error, term()} | OTP 21.0 |
Types
Remove the filter identified by FilterId
from the handler identified by HandlerId
.
remove_primary_filter(FilterId) -> ok | {error, term()} | OTP 21.0 |
Types
Remove the primary filter identified by FilterId
from Logger.
set_application_level(Application, Level) -> ok | {error, not_loaded} | OTP 21.1 |
Types
Set the log level for all the modules of the specified application.
This function is a convenience function that calls logger:set_module_level/2
for each module associated with an application.
set_handler_config(HandlerId, Config) -> ok | {error, term()} | OTP 21.0 |
Types
Set configuration data for the specified handler. This overwrites the current handler configuration.
To modify the existing configuration, use update_handler_config/2
, or, if a more complex merge is needed, read the current configuration with get_handler_config/1
, then do the merge before writing the new configuration back with this function.
If a key is removed compared to the current configuration, and the key is known by Logger, the default value is used. If it is a custom key, then it is up to the handler implementation if the value is removed or a default value is inserted.
set_handler_config(HandlerId, Key :: level, Level) -> Return | OTP 21.0 |
set_handler_config(HandlerId, Key :: filter_default, FilterDefault) -> Return | OTP 21.0 |
set_handler_config(HandlerId, Key :: filters, Filters) -> Return | OTP 21.0 |
set_handler_config(HandlerId, Key :: formatter, Formatter) -> Return | OTP 21.0 |
set_handler_config(HandlerId, Key :: config, Config) -> Return | OTP 21.0 |
Types
Add or update configuration data for the specified handler. If the given Key
already exists, its associated value will be changed to the given value. If it does not exist, it will be added.
If the value is incomplete, which for example can be the case for the config
key, it is up to the handler implementation how the unspecified parts are set. For all handlers in the Kernel application, unspecified data for the config
key is set to default values. To update only specified data, and keep the existing configuration for the rest, use update_handler_config/3
.
See the definition of the handler_config()
type for more information about the different parameters.
set_primary_config(Config) -> ok | {error, term()} | OTP 21.0 |
Types
Set primary configuration data for Logger. This overwrites the current configuration.
To modify the existing configuration, use update_primary_config/1
, or, if a more complex merge is needed, read the current configuration with get_primary_config/0
, then do the merge before writing the new configuration back with this function.
If a key is removed compared to the current configuration, the default value is used.
set_primary_config(Key :: level, Level) -> ok | {error, term()} | OTP 21.0 |
set_primary_config(Key :: filter_default, FilterDefault) -> ok | {error, term()} | OTP 21.0 |
set_primary_config(Key :: filters, Filters) -> ok | {error, term()} | OTP 21.0 |
set_primary_config(Key :: metadata, Meta) -> ok | {error, term()} | OTP 24.0 |
Types
Add or update primary configuration data for Logger. If the given Key
already exists, its associated value will be changed to the given value. If it does not exist, it will be added.
set_proxy_config(Config) -> ok | {error, term()} | OTP 21.3 |
Types
Set configuration data for the Logger proxy. This overwrites the current proxy configuration. Keys that are not specified in the Config
map gets default values.
To modify the existing configuration, use update_proxy_config/1
, or, if a more complex merge is needed, read the current configuration with get_proxy_config/0
, then do the merge before writing the new configuration back with this function.
For more information about the proxy, see section Logger Proxy
in the Kernel User's Guide.
set_module_level(Modules, Level) -> ok | {error, term()} | OTP 21.0 |
Types
Set the log level for the specified modules.
The log level for a module overrides the primary log level of Logger for log events originating from the module in question. Notice, however, that it does not override the level configuration for any handler.
For example: Assume that the primary log level for Logger is info
, and there is one handler, h1
, with level info
and one handler, h2
, with level debug
.
With this configuration, no debug messages will be logged, since they are all stopped by the primary log level.
If the level for mymodule
is now set to debug
, then debug events from this module will be logged by the handler h2
, but not by handler h1
.
Debug events from other modules are still not logged.
To change the primary log level for Logger, use set_primary_config(level, Level)
.
To change the log level for a handler, use set_handler_config(HandlerId, level, Level)
.
The originating module for a log event is only detected if the key mfa
exists in the metadata, and is associated with {Module, Function, Arity}
. When log macros are used, this association is automatically added to all log events. If an API function is called directly, without using a macro, the logging client must explicitly add this information if module levels shall have any effect.
set_process_metadata(Meta) -> ok | OTP 21.0 |
Types
Set metadata which Logger shall automatically insert in all log events produced on the current process.
Location data produced by the log macros, and/or metadata given as argument to the log call (API function or macro), are merged with the process metadata. If the same keys occur, values from the metadata argument to the log call overwrite values from the process metadata, which in turn overwrite values from the location data.
Subsequent calls to this function overwrites previous data set. To update existing data instead of overwriting it, see update_process_metadata/1
.
unset_application_level(Application) -> ok | {error, {not_loaded, Application}} | OTP 21.1 |
Types
Unset the log level for all the modules of the specified application.
This function is a utility function that calls logger:unset_module_level/2
for each module associated with an application.
unset_module_level() -> ok | OTP 21.0 |
Remove module specific log settings. After this, the primary log level is used for all modules.
unset_module_level(Modules) -> ok | OTP 21.0 |
Types
Remove module specific log settings. After this, the primary log level is used for the specified modules.
unset_process_metadata() -> ok | OTP 21.0 |
Delete data set with set_process_metadata/1
or update_process_metadata/1
.
update_formatter_config(HandlerId, FormatterConfig) -> ok | {error, term()} | OTP 21.0 |
Types
Update the formatter configuration for the specified handler.
The new configuration is merged with the existing formatter configuration.
To overwrite the existing configuration without any merge, use
set_handler_config(HandlerId, formatter, {FormatterModule, FormatterConfig}).
update_formatter_config(HandlerId, Key, Value) -> ok | {error, term()} | OTP 21.0 |
Types
Update the formatter configuration for the specified handler.
This is equivalent to
update_formatter_config(HandlerId, #{Key => Value})
update_handler_config(HandlerId, Config) -> ok | {error, term()} | OTP 21.0 |
Types
Update configuration data for the specified handler. This function behaves as if it was implemented as follows:
{ok, {_, Old}} = logger:get_handler_config(HandlerId), logger:set_handler_config(HandlerId, maps:merge(Old, Config)).
To overwrite the existing configuration without any merge, use set_handler_config/2
.
update_handler_config(HandlerId, Key :: level, Level) -> Return | OTP 21.2 |
update_handler_config(HandlerId, Key :: filter_default, FilterDefault) -> Return | OTP 21.2 |
update_handler_config(HandlerId, Key :: filters, Filters) -> Return | OTP 21.2 |
update_handler_config(HandlerId, Key :: formatter, Formatter) -> Return | OTP 21.2 |
update_handler_config(HandlerId, Key :: config, Config) -> Return | OTP 21.2 |
Types
Add or update configuration data for the specified handler. If the given Key
already exists, its associated value will be changed to the given value. If it does not exist, it will be added.
If the value is incomplete, which for example can be the case for the config
key, it is up to the handler implementation how the unspecified parts are set. For all handlers in the Kernel application, unspecified data for the config
key is not changed. To reset unspecified data to default values, use set_handler_config/3
.
See the definition of the handler_config()
type for more information about the different parameters.
update_primary_config(Config) -> ok | {error, term()} | OTP 21.0 |
Types
Update primary configuration data for Logger. This function behaves as if it was implemented as follows:
Old = logger:get_primary_config(), logger:set_primary_config(maps:merge(Old, Config)).
To overwrite the existing configuration without any merge, use set_primary_config/1
.
update_process_metadata(Meta) -> ok | OTP 21.0 |
Types
Set or update metadata to use when logging from current process
If process metadata exists for the current process, this function behaves as if it was implemented as follows:
logger:set_process_metadata(maps:merge(logger:get_process_metadata(), Meta)).
If no process metadata exists, the function behaves as set_process_metadata/1
.
update_proxy_config(Config) -> ok | {error, term()} | OTP 21.3 |
Types
Update configuration data for the Logger proxy. This function behaves as if it was implemented as follows:
Old = logger:get_proxy_config(), logger:set_proxy_config(maps:merge(Old, Config)).
To overwrite the existing configuration without any merge, use set_proxy_config/1
.
For more information about the proxy, see section Logger Proxy
in the Kernel User's Guide.
Miscellaneous API functions
Exports
compare_levels(Level1, Level2) -> eq | gt | lt | OTP 21.0 |
Types
Compare the severity of two log levels. Returns gt
if Level1
is more severe than Level2
, lt
if Level1
is less severe, and eq
if the levels are equal.
format_report(Report) -> FormatArgs | OTP 21.0 |
Types
Convert a log message on report form to {Format, Args}
. This is the default report callback used by logger_formatter(3)
when no custom report callback is found. See section Log Message
in the Kernel User's Guide for information about report callbacks and valid forms of log messages.
The function produces lines of Key: Value
from key-value lists. Strings are printed with ~ts
and other terms with ~tp
.
If Report
is a map, it is converted to a key-value list before formatting as such.
timestamp() -> timestamp() | OTP 21.3 |
Return a timestamp that can be inserted as the time
field in the meta data for a log event. It is produced with os:system_time(microsecond)
.
Notice that Logger automatically inserts a timestamp in the meta data unless it already exists. This function is exported for the rare case when the timestamp must be taken at a different point in time than when the log event is issued.
Handler Callback Functions
The following functions are to be exported from a handler callback module.
Exports
HModule:adding_handler(Config1) -> {ok, Config2} | {error, Reason} | OTP 21.0 |
Types
This callback function is optional.
The function is called on a temporary process when a new handler is about to be added. The purpose is to verify the configuration and initiate all resources needed by the handler.
The handler identity is associated with the id
key in Config1
.
If everything succeeds, the callback function can add possible default values or internal state values to the configuration, and return the adjusted map in {ok,Config2}
.
If the configuration is faulty, or if the initiation fails, the callback function must return {error,Reason}
.
HModule:changing_config(SetOrUpdate, OldConfig, NewConfig) -> {ok, Config} | {error, Reason} | OTP 21.2 |
Types
This callback function is optional.
The function is called on a temporary process when the configuration for a handler is about to change. The purpose is to verify and act on the new configuration.
OldConfig
is the existing configuration and NewConfig
is the new configuration.
The handler identity is associated with the id
key in OldConfig
.
SetOrUpdate
has the value set
if the configuration change originates from a call to set_handler_config/2,3
, and update
if it originates from update_handler_config/2,3
. The handler can use this parameter to decide how to update the value of the config
field, that is, the handler specific configuration data. Typically, if SetOrUpdate
equals set
, values that are not specified must be given their default values. If SetOrUpdate
equals update
, the values found in OldConfig
must be used instead.
If everything succeeds, the callback function must return a possibly adjusted configuration in {ok,Config}
.
If the configuration is faulty, the callback function must return {error,Reason}
.
HModule:filter_config(Config) -> FilteredConfig | OTP 21.2 |
Types
This callback function is optional.
The function is called when one of the Logger API functions for fetching the handler configuration is called, for example logger:get_handler_config/1
.
It allows the handler to remove internal data fields from its configuration data before it is returned to the caller.
HModule:log(LogEvent, Config) -> void() | OTP 21.0 |
Types
This callback function is mandatory.
The function is called when all primary filters and all handler filters for the handler in question have passed for the given log event. It is called on the client process, that is, the process that issued the log event.
The handler identity is associated with the id
key in Config
.
The handler must log the event.
The return value from this function is ignored by Logger.
HModule:removing_handler(Config) -> ok | OTP 21.0 |
Types
This callback function is optional.
The function is called on a temporary process when a handler is about to be removed. The purpose is to release all resources used by the handler.
The handler identity is associated with the id
key in Config
.
The return value is ignored by Logger.
Formatter Callback Functions
The following functions are to be exported from a formatter callback module.
Exports
FModule:check_config(FConfig) -> ok | {error, Reason} | OTP 21.0 |
Types
This callback function is optional.
The function is called by a Logger when formatter configuration is set or modified. The formatter must validate the given configuration and return ok
if it is correct, and {error,Reason}
if it is faulty.
The following Logger API functions can trigger this callback:
logger:add_handler/3
logger:set_handler_config/2,3
logger:update_handler_config/2,3
logger:update_formatter_config/2
See logger_formatter(3)
for an example implementation. logger_formatter
is the default formatter used by Logger.
FModule:format(LogEvent, FConfig) -> FormattedLogEntry | OTP 21.0 |
Types
This callback function is mandatory.
The function can be called by a log handler to convert a log event term to a printable string. The returned value can, for example, be printed as a log entry to the console or a file using io:put_chars/1,2
.
See logger_formatter(3)
for an example implementation. logger_formatter
is the default formatter used by Logger.
See Also
config(4)
, erlang(3)
, io(3)
, logger_disk_log_h(3)
, logger_filters(3)
, logger_formatter(3)
, logger_std_h(3)
, unicode(3)
© 2010–2021 Ericsson AB
Licensed under the Apache License, Version 2.0.