Module
zlib
Module Summary
zlib compression interface.
Description
This module provides an API for the zlib library (www.zlib.net
). It is used to compress and decompress data. The data format is described by RFC 1950
, RFC 1951
, and RFC 1952
.
A typical (compress) usage is as follows:
Z = zlib:open(), ok = zlib:deflateInit(Z,default), Compress = fun(end_of_data, _Cont) -> []; (Data, Cont) -> [zlib:deflate(Z, Data)|Cont(Read(),Cont)] end, Compressed = Compress(Read(),Compress), Last = zlib:deflate(Z, [], finish), ok = zlib:deflateEnd(Z), zlib:close(Z), list_to_binary([Compressed|Last])
In all functions errors, {'EXIT',{Reason,Backtrace}}
, can be thrown, where Reason
describes the error.
Typical Reason
s:
badarg
- Bad argument.
not_initialized
- The stream hasn't been initialized, eg. if
inflateInit/1
wasn't called prior to a call toinflate/2
. not_on_controlling_process
- The stream was used by a process that doesn't control it. Use
set_controlling_process/2
if you need to transfer a stream to a different process. data_error
- The data contains errors.
stream_error
- Inconsistent stream state.
{need_dictionary,Adler32}
- See
inflate/2
.
Data Types
zstream() = reference()
A zlib stream, see open/0
.
zlevel() =
none | default | best_compression | best_speed | 0..9
zflush() = none | sync | full | finish
zmemlevel() = 1..9
zmethod() = deflated
zstrategy() = default | filtered | huffman_only | rle
zwindowbits() = -15..-8 | 8..47
Normally in the range -15..-8 | 8..15
.
Exports
adler32(Z, Data) -> CheckSum |
Types
Calculates the Adler-32 checksum for Data
.
This function is deprecated and will be removed in a future release. Use erlang:adler32/1
instead.
adler32(Z, PrevAdler, Data) -> CheckSum |
Types
Updates a running Adler-32 checksum for Data
. If Data
is the empty binary or the empty iolist, this function returns the required initial value for the checksum.
Example:
Crc = lists:foldl(fun(Data,Crc0) -> zlib:adler32(Z, Crc0, Data), end, zlib:adler32(Z,<< >>), Datas)
This function is deprecated and will be removed in a future release. Use erlang:adler32/2
instead.
adler32_combine(Z, Adler1, Adler2, Size2) -> Adler |
Types
Combines two Adler-32 checksums into one. For two binaries or iolists, Data1
and Data2
with sizes of Size1
and Size2
, with Adler-32 checksums Adler1
and Adler2
.
This function returns the Adler
checksum of [Data1,Data2]
, requiring only Adler1
, Adler2
, and Size2
.
This function is deprecated and will be removed in a future release. Use erlang:adler32_combine/3
instead.
close(Z) -> ok |
Types
Closes the stream referenced by Z
.
compress(Data) -> Compressed |
Types
Compresses data with zlib headers and checksum.
crc32(Z) -> CRC |
Types
Gets the current calculated CRC checksum.
This function is deprecated and will be removed in a future release. Use erlang:crc32/1
on the uncompressed data instead.
crc32(Z, Data) -> CRC |
Types
Calculates the CRC checksum for Data
.
This function is deprecated and will be removed in a future release. Use erlang:crc32/1
instead.
crc32(Z, PrevCRC, Data) -> CRC |
Types
Updates a running CRC checksum for Data
. If Data
is the empty binary or the empty iolist, this function returns the required initial value for the CRC.
Example:
Crc = lists:foldl(fun(Data,Crc0) -> zlib:crc32(Z, Crc0, Data), end, zlib:crc32(Z,<< >>), Datas)
This function is deprecated and will be removed in a future release. Use erlang:crc32/2
instead.
crc32_combine(Z, CRC1, CRC2, Size2) -> CRC |
Types
Combines two CRC checksums into one. For two binaries or iolists, Data1
and Data2
with sizes of Size1
and Size2
, with CRC checksums CRC1
and CRC2
.
This function returns the CRC
checksum of [Data1,Data2]
, requiring only CRC1
, CRC2
, and Size2
.
This function is deprecated and will be removed in a future release. Use erlang:crc32_combine/3
instead.
deflate(Z, Data) -> Compressed |
Types
Same as deflate(Z, Data, none)
.
deflate(Z, Data, Flush) -> Compressed |
Types
Compresses as much data as possible, and stops when the input buffer becomes empty. It can introduce some output latency (reading input without producing any output) except when forced to flush.
If Flush
is set to sync
, all pending output is flushed to the output buffer and the output is aligned on a byte boundary, so that the decompressor can get all input data available so far. Flushing can degrade compression for some compression algorithms; thus, use it only when necessary.
If Flush
is set to full
, all output is flushed as with sync
, and the compression state is reset so that decompression can restart from this point if previous compressed data has been damaged or if random access is desired. Using full
too often can seriously degrade the compression.
If Flush
is set to finish
, pending input is processed, pending output is flushed, and deflate/3
returns. Afterwards the only possible operations on the stream are deflateReset/1
or deflateEnd/1
.
Flush
can be set to finish
immediately after deflateInit
if all compression is to be done in one step.
Example:
zlib:deflateInit(Z), B1 = zlib:deflate(Z,Data), B2 = zlib:deflate(Z,<< >>,finish), zlib:deflateEnd(Z), list_to_binary([B1,B2])
deflateEnd(Z) -> ok |
Types
Ends the deflate session and cleans all data used. Notice that this function throws a data_error
exception if the last call to deflate/3
was not called with Flush
set to finish
.
deflateInit(Z) -> ok |
Types
Same as zlib:deflateInit(Z, default)
.
deflateInit(Z, Level) -> ok |
Types
Initializes a zlib stream for compression.
Level
decides the compression level to be used:
-
default
gives default compromise between speed and compression -
none
(0) gives no compression -
best_speed
(1) gives best speed -
best_compression
(9) gives best compression
deflateInit(Z, Level, Method, WindowBits, MemLevel, Strategy) -> ok |
Types
Initiates a zlib stream for compression.
Level
-
Compression level to use:
-
default
gives default compromise between speed and compression -
none
(0) gives no compression -
best_speed
(1) gives best speed -
best_compression
(9) gives best compression
-
Method
-
Compression method to use, currently the only supported method is
deflated
. WindowBits
-
The base two logarithm of the window size (the size of the history buffer). It is to be in the range 8 through 15. Larger values result in better compression at the expense of memory usage. Defaults to 15 if
deflateInit/2
is used. A negativeWindowBits
value suppresses the zlib header (and checksum) from the stream. Notice that the zlib source mentions this only as a undocumented feature.WarningDue to a known bug in the underlying zlib library,
WindowBits
values 8 and -8 do not work as expected. In zlib versions before 1.2.9 values 8 and -8 are automatically changed to 9 and -9. From zlib version 1.2.9 value -8 is rejected causingzlib:deflateInit/6
to fail (8 is still changed to 9). It also seem possible that future versions of zlib may fix this bug and start accepting 8 and -8 as is.Conclusion: Avoid values 8 and -8 unless you know your zlib version supports them.
MemLevel
-
Specifies how much memory is to be allocated for the internal compression state:
MemLevel
=1 uses minimum memory but is slow and reduces compression ratio;MemLevel
=9 uses maximum memory for optimal speed. Defaults to 8. Strategy
-
Tunes the compression algorithm. Use the following values:
-
default
for normal data -
filtered
for data produced by a filter (or predictor) -
huffman_only
to force Huffman encoding only (no string match) -
rle
to limit match distances to one (run-length encoding)
Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of
filtered
is to force more Huffman coding and less string matching; it is somewhat intermediate betweendefault
andhuffman_only
.rle
is designed to be almost as fast ashuffman_only
, but gives better compression for PNG image data.Strategy
affects only the compression ratio, but not the correctness of the compressed output even if it is not set appropriately. -
deflateParams(Z, Level, Strategy) -> ok |
Types
Dynamically updates the compression level and compression strategy. The interpretation of Level
and Strategy
is as in deflateInit/6
. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and can be flushed); the new level takes effect only at the next call of deflate/3
.
Before the call of deflateParams
, the stream state must be set as for a call of deflate/3
, as the currently available input may have to be compressed and flushed.
deflateReset(Z) -> ok |
Types
Equivalent to deflateEnd/1
followed by deflateInit/1,2,6
, but does not free and reallocate all the internal compression state. The stream keeps the same compression level and any other attributes.
deflateSetDictionary(Z, Dictionary) -> Adler32 |
Types
Initializes the compression dictionary from the specified byte sequence without producing any compressed output.
This function must be called immediately after deflateInit/1,2,6
or deflateReset/1
, before any call of deflate/3
.
The compressor and decompressor must use the same dictionary (see inflateSetDictionary/2
).
The Adler checksum of the dictionary is returned.
getBufSize(Z) -> integer() >= 0 |
Types
Gets the size of the intermediate buffer.
This function is deprecated and will be removed in a future release.
gunzip(Data) -> Decompressed |
Types
Uncompresses data with gz headers and checksum.
gzip(Data) -> Compressed |
Types
Compresses data with gz headers and checksum.
inflate(Z, Data) -> Decompressed |
Types
Equivalent to inflate(Z, Data, [])
inflate(Z, Data, Options) -> Decompressed | OTP 20.1 |
Types
Decompresses as much data as possible. It can introduce some output latency (reading input without producing any output).
Currently the only available option is {exception_on_need_dict,boolean()}
which controls whether the function should throw an exception when a preset dictionary is required for decompression. When set to false, a need_dictionary
tuple will be returned instead. See inflateSetDictionary/2
for details.
This option defaults to true
for backwards compatibility but we intend to remove the exception behavior in a future release. New code that needs to handle dictionaries manually should always specify {exception_on_need_dict,false}
.
inflateChunk(Z) -> Decompressed | {more, Decompressed} | OTP 18.0 |
Types
This function is deprecated and will be removed in a future release. Use safeInflate/2
instead.
Reads the next chunk of uncompressed data, initialized by inflateChunk/2
.
This function is to be repeatedly called, while it returns {more, Decompressed}
.
inflateChunk(Z, Data) -> Decompressed | {more, Decompressed} | OTP 18.0 |
Types
This function is deprecated and will be removed in a future release. Use safeInflate/2
instead.
Like inflate/2
, but decompresses no more data than will fit in the buffer configured through setBufSize/2
. Is is useful when decompressing a stream with a high compression ratio, such that a small amount of compressed input can expand up to 1000 times.
This function returns {more, Decompressed}
, when there is more output available, and inflateChunk/1
is to be used to read it.
This function can introduce some output latency (reading input without producing any output).
An exception will be thrown if a preset dictionary is required for further decompression. See inflateSetDictionary/2
for details.
Example:
walk(Compressed, Handler) -> Z = zlib:open(), zlib:inflateInit(Z), % Limit single uncompressed chunk size to 512kb zlib:setBufSize(Z, 512 * 1024), loop(Z, Handler, zlib:inflateChunk(Z, Compressed)), zlib:inflateEnd(Z), zlib:close(Z). loop(Z, Handler, {more, Uncompressed}) -> Handler(Uncompressed), loop(Z, Handler, zlib:inflateChunk(Z)); loop(Z, Handler, Uncompressed) -> Handler(Uncompressed).
inflateEnd(Z) -> ok |
Types
Ends the inflate session and cleans all data used. Notice that this function throws a data_error
exception if no end of stream was found (meaning that not all data has been uncompressed).
inflateGetDictionary(Z) -> Dictionary | OTP 20.0 |
Types
Returns the decompression dictionary currently in use by the stream. This function must be called between inflateInit/1,2
and inflateEnd
.
Only supported if ERTS was compiled with zlib >= 1.2.8.
inflateInit(Z) -> ok |
Types
Initializes a zlib stream for decompression.
inflateInit(Z, WindowBits) -> ok |
Types
Initializes a decompression session on zlib stream.
WindowBits
is the base two logarithm of the maximum window size (the size of the history buffer). It is to be in the range 8 through 15. Default to 15 if inflateInit/1
is used.
If a compressed stream with a larger window size is specified as input, inflate/2
throws the data_error
exception.
A negative WindowBits
value makes zlib ignore the zlib header (and checksum) from the stream. Notice that the zlib source mentions this only as a undocumented feature.
inflateReset(Z) -> ok |
Types
Equivalent to inflateEnd/1
followed by inflateInit/1
, but does not free and reallocate all the internal decompression state. The stream will keep attributes that could have been set by inflateInit/1,2
.
inflateSetDictionary(Z, Dictionary) -> ok |
Types
Initializes the decompression dictionary from the specified uncompressed byte sequence. This function must be called as a response to an inflate operation (eg. safeInflate/2
) returning {need_dictionary,Adler,Output}
or in the case of deprecated functions, throwing an {'EXIT',{{need_dictionary,Adler},_StackTrace}}
exception.
The dictionary chosen by the compressor can be determined from the Adler value returned or thrown by the call to the inflate function. The compressor and decompressor must use the same dictionary (See deflateSetDictionary/2
).
After setting the dictionary the inflate operation should be retried without new input.
Example:
deprecated_unpack(Z, Compressed, Dict) -> case catch zlib:inflate(Z, Compressed) of {'EXIT',{{need_dictionary,_DictID},_}} -> ok = zlib:inflateSetDictionary(Z, Dict), Uncompressed = zlib:inflate(Z, []); Uncompressed -> Uncompressed end. new_unpack(Z, Compressed, Dict) -> case zlib:inflate(Z, Compressed, [{exception_on_need_dict, false}]) of {need_dictionary, _DictId, Output} -> ok = zlib:inflateSetDictionary(Z, Dict), [Output | zlib:inflate(Z, [])]; Uncompressed -> Uncompressed end.
open() -> zstream() |
Opens a zlib stream.
safeInflate(Z, Data) -> Result | OTP 20.1 |
Types
Like inflate/2
, but returns once it has expanded beyond a small implementation-defined threshold. It's useful when decompressing untrusted input which could have been maliciously crafted to expand until the system runs out of memory.
This function returns {continue | finished, Output}
, where Output is the data that was decompressed in this call. New input can be queued up on each call if desired, and the function will return {finished, Output}
once all queued data has been decompressed.
This function can introduce some output latency (reading input without producing any output).
If a preset dictionary is required for further decompression, this function returns a need_dictionary
tuple. See inflateSetDictionary/2
) for details.
Example:
walk(Compressed, Handler) -> Z = zlib:open(), zlib:inflateInit(Z), loop(Z, Handler, zlib:safeInflate(Z, Compressed)), zlib:inflateEnd(Z), zlib:close(Z). loop(Z, Handler, {continue, Output}) -> Handler(Output), loop(Z, Handler, zlib:safeInflate(Z, [])); loop(Z, Handler, {finished, Output}) -> Handler(Output).
setBufSize(Z, Size) -> ok |
Types
Sets the intermediate buffer size.
This function is deprecated and will be removed in a future release.
set_controlling_process(Z, Pid) -> ok | OTP 20.1.3 |
Types
Changes the controlling process of Z
to Pid
, which must be a local process.
uncompress(Data) -> Decompressed |
Types
Uncompresses data with zlib headers and checksum.
unzip(Data) -> Decompressed |
Types
Uncompresses data without zlib headers and checksum.
zip(Data) -> Compressed |
Types
Compresses data without zlib headers and checksum.
© 2010–2021 Ericsson AB
Licensed under the Apache License, Version 2.0.