let
The let
statement declares a block-scoped local variable, optionally initializing it to a value.
Syntax
let name1 [= value1] [, name2 [= value2]] [, ..., nameN [= valueN];
Parameters
nameN
-
The names of the variable or variables to declare. Each must be a legal JavaScript identifier.
-
valueN
Optional -
For each variable declared, you may optionally specify its initial value to any legal JavaScript expression.
Alternatively, the Destructuring Assignment syntax can also be used to declare variables.
let { bar } = foo; // where foo = { bar:10, baz:12 }; /* This creates a variable with the name 'bar', which has a value of 10 */
Description
let
allows you to declare variables that are limited to the scope of a block statement, or expression on which it is used, unlike the var
keyword, which declares a variable globally, or locally to an entire function regardless of block scope. The other difference between var
and let
is that the latter is initialized to a value only when a parser evaluates it (see below).
Just like const
the let
does not create properties of the window
object when declared globally (in the top-most scope).
An explanation of why the name "let" was chosen can be found here.
Note: Many issues with let
variables can be avoided by declaring them at the top of the scope in which they are used (doing so may impact readibility).
Examples
Scoping rules
Variables declared by let
have their scope in the block for which they are declared, as well as in any contained sub-blocks. In this way, let
works very much like var
. The main difference is that the scope of a var
variable is the entire enclosing function:
function varTest() { var x = 1; { var x = 2; // same variable! console.log(x); // 2 } console.log(x); // 2 } function letTest() { let x = 1; { let x = 2; // different variable console.log(x); // 2 } console.log(x); // 1 }
At the top level of programs and functions, let
, unlike var
, does not create a property on the global object. For example:
var x = 'global'; let y = 'global'; console.log(this.x); // "global" console.log(this.y); // undefined
Emulating private members
In dealing with constructors it is possible to use the let
bindings to share one or more private members without using closures:
var Thing; { let privateScope = new WeakMap(); let counter = 0; Thing = function() { this.someProperty = 'foo'; privateScope.set(this, { hidden: ++counter, }); }; Thing.prototype.showPublic = function() { return this.someProperty; }; Thing.prototype.showPrivate = function() { return privateScope.get(this).hidden; }; } console.log(typeof privateScope); // "undefined" var thing = new Thing(); console.log(thing); // Thing {someProperty: "foo"} thing.showPublic(); // "foo" thing.showPrivate(); // 1
The same privacy pattern with closures over local variables can be created with var
, but those need a function scope (typically an IIFE in the module pattern) instead of just a block scope like in the example above.
Redeclarations
Redeclaring the same variable within the same function or block scope raises a SyntaxError
.
if (x) { let foo; let foo; // SyntaxError thrown. }
You may encounter errors in switch
statements because there is only one block.
let x = 1; switch(x) { case 0: let foo; break; case 1: let foo; // SyntaxError for redeclaration. break; }
However, it's important to point out that a block nested inside a case clause will create a new block scoped lexical environment, which will not produce the redeclaration errors shown above.
let x = 1; switch(x) { case 0: { let foo; break; } case 1: { let foo; break; } }
Temporal dead zone (TDZ)
let
variables cannot be read/written until they have been fully initialized, which happens when they are declared (if no initial value is specified on declaration, the variable is initialized with a value of undefined
). Accessing the variable before the initialization results in a ReferenceError
.
Note: This differs from var
variables, which will return a value of undefined
if they are accessed before they are declared.
The variable is said to be in a "temporal dead zone" (TDZ) from the start of the block until the initialization has completed.
{ // TDZ starts at beginning of scope console.log(bar); // undefined console.log(foo); // ReferenceError var bar = 1; let foo = 2; // End of TDZ (for foo) }
The term "temporal" is used because the zone depends on the order of execution (time) rather than the order in which the code is written (position). For example, the code below works because, even though the function that uses the let
variable appears before the variable is declared, the function is called outside the TDZ.
{ // TDZ starts at beginning of scope const func = () => console.log(letVar); // OK // Within the TDZ letVar access throws `ReferenceError` let letVar = 3; // End of TDZ (for letVar) func(); // Called outside TDZ! }
The TDZ and typeof
Using the typeof
operator for a let
variable in its TDZ will throw a ReferenceError
:
// results in a 'ReferenceError' console.log(typeof i); let i = 10;
This differs from using typeof
for undeclared variables, and variables that hold a value of undefined
:
// prints out 'undefined' console.log(typeof undeclaredVariable);
TDZ combined with lexical scoping
The following code results in a ReferenceError
at the line shown:
function test(){ var foo = 33; if(foo) { let foo = (foo + 55); // ReferenceError } } test();
The if
block is evaluated because the outer var foo
has a value. However due to lexical scoping this value is not available inside the block: the identifier foo
inside the if
block is the let foo
. The expression (foo + 55)
throws a ReferenceError
because initialization of let foo
has not completed — it is still in the temporal dead zone.
This phenomenon can be confusing in a situation like the following. The instruction let n of n.a
is already inside the private scope of the for loop's block. So, the identifier n.a
is resolved to the property 'a
' of the 'n
' object located in the first part of the instruction itself (let n
).
This is still in the temporal dead zone as its declaration statement has not been reached and terminated.
function go(n) { // n here is defined! console.log(n); // Object {a: [1,2,3]} for (let n of n.a) { // ReferenceError console.log(n); } } go({a: [1, 2, 3]});
Other situations
When used inside a block, let
limits the variable's scope to that block. Note the difference between var
, whose scope is inside the function where it is declared.
var a = 1; var b = 2; if (a === 1) { var a = 11; // the scope is global let b = 22; // the scope is inside the if-block console.log(a); // 11 console.log(b); // 22 } console.log(a); // 11 console.log(b); // 2
However, this combination of var
and let
declaration below is a SyntaxError
due to var
being hoisted to the top of the block. This results in an implicit re-declaration of the variable.
let x = 1; { var x = 2; // SyntaxError for re-declaration }
Specifications
Browser compatibility
Desktop | Mobile | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chrome | Edge | Firefox | Internet Explorer | Opera | Safari | WebView Android | Chrome Android | Firefox for Android | Opera Android | Safari on IOS | Samsung Internet | |
let |
49
48-49
Support outside of strict mode.
41-49
Strict mode is required.
|
14
12-14
In Edge 12 and 13,
let within a for loop initializer does not create a separate variable for each loop iteration as defined by ES2015. Instead, it behaves as though the loop were wrapped in a scoping block with the let immediately before the loop. |
44
["Before Firefox 44,
let is only available to code blocks in HTML wrapped in a <script type=\"application/javascript;version=1.7\"> block (or higher version) and has different semantics (e.g. no temporal dead zone).", "Before Firefox 46, a TypeError is thrown on redeclaration instead of a SyntaxError .", "Firefox 54 adds support of let in workers."] |
11
In Internet Explorer,
let within a for loop initializer does not create a separate variable for each loop iteration as defined by ES2015. Instead, it behaves as though the loop were wrapped in a scoping block with the let immediately before the loop. |
17 |
10 |
49
41-49
Strict mode is required.
|
49
48-49
Support outside of strict mode.
41-49
Strict mode is required.
|
44
["Before Firefox 44,
let is only available to code blocks in HTML wrapped in a <script type=\"application/javascript;version=1.7\"> block (or higher version) and has different semantics (e.g. no temporal dead zone).", "Before Firefox 46, a TypeError is thrown on redeclaration instead of a SyntaxError .", "Firefox 54 adds support of let in workers."] |
18 |
10 |
5.0
4.0-5.0
Strict mode is required.
|
See also
var
const
- ES6 In Depth:
let
andconst
- Breaking changes in
let
andconst
in Firefox 44 - You Don't Know JS: Scope & Closures: Chapter 3: Function vs. Block Scope
- StackOverflow: What is the Temporal Dead Zone?
- StackOverflow: What is the difference between using
let
andvar
?
© 2005–2021 MDN contributors.
Licensed under the Creative Commons Attribution-ShareAlike License v2.5 or later.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let