Math.hypot()

The Math.hypot() function returns the square root of the sum of squares of its arguments, that is:

Math.hypot ( v 1 , v 2 , , v n ) = i = 1 n v i 2 = v 1 2 + v 2 2 + + v n 2 \mathtt{\operatorname{Math.hypot}(v1, v_2, \dots, v_n)} = \sqrt{\sum{i=1}^n v_i^2} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}

Syntax

Math.hypot()
Math.hypot(value0)
Math.hypot(value0, value1)
Math.hypot(value0, value1, ... , valueN)

Parameters

value1, value2, ...

Numbers.

Return value

The square root of the sum of squares of the given arguments. If at least one of the arguments cannot be converted to a number, NaN is returned.

Description

Calculating the hypotenuse of a right triangle, or the magnitude of a complex number, uses the formula Math.sqrt(v1*v1 + v2*v2), where v1 and v2 are the lengths of the triangle's legs, or the complex number's real and complex components. The corresponding distance in 2 or more dimensions can be calculated by adding more squares under the square root: Math.sqrt(v1*v1 + v2*v2 + v3*v3 + v4*v4).

This function makes this calculation easier and faster; you call Math.hypot(v1, v2) , or Math.hypot(v1, v2, v3, v4, ...).

Math.hypot also avoids overflow/underflow problems if the magnitude of your numbers is very large. The largest number you can represent in JS is Number.MAX_VALUE, which is around 10^308. If your numbers are larger than about 10^154, taking the square of them will result in Infinity. For example, Math.sqrt(1e200*1e200 + 1e200*1e200) = Infinity. If you use hypot() instead, you get better answer: Math.hypot(1e200, 1e200) = 1.4142...e+200 . This is also true with very small numbers. Math.sqrt(1e-200*1e-200 + 1e-200*1e-200) = 0, but Math.hypot(1e-200, 1e-200) = 1.4142...e-200.

Because hypot() is a static method of Math, you always use it as Math.hypot(), rather than as a method of a Math object you created (Math is not a constructor).

If no arguments are given, the result is +0. If any of the arguments is ±Infinity, the result is Infinity. If any of the arguments is NaN (unless another argument is ±Infinity), the result is NaN. If at least one of the arguments cannot be converted to a number, the result is NaN.

With one argument, Math.hypot() is equivalent to Math.abs().

Examples

Using Math.hypot()

Math.hypot(3, 4);          // 5
Math.hypot(3, 4, 5);       // 7.0710678118654755
Math.hypot();              // 0
Math.hypot(NaN);           // NaN
Math.hypot(NaN, Infinity); // Infinity
Math.hypot(3, 4, 'foo');   // NaN, since +'foo' => NaN
Math.hypot(3, 4, '5');     // 7.0710678118654755, +'5' => 5
Math.hypot(-3);            // 3, the same as Math.abs(-3)

Polyfill

A naive approach that does not handle overflow/underflow issues:

if (!Math.hypot) Math.hypot = function() {
  var y = 0, i = arguments.length, containsInfinity = false;
  while (i--) {
    var arg = arguments[i];
    if (arg === Infinity || arg === -Infinity)
      containsInfinity = true
    y += arg * arg
  }
  return containsInfinity ? Infinity : Math.sqrt(y)
}

A polyfill that avoids underflows and overflows:

if (!Math.hypot) Math.hypot = function () {
  var max = 0;
  var s = 0;
  var containsInfinity = false;
  for (var i = 0; i < arguments.length; ++i) {
    var arg = Math.abs(Number(arguments[i]));
    if (arg === Infinity)
      containsInfinity = true
    if (arg > max) {
      s *= (max / arg) * (max / arg);
      max = arg;
    }
    s += arg === 0 && max === 0 ? 0 : (arg / max) * (arg / max);
  }
  return containsInfinity ? Infinity : (max === 1 / 0 ? 1 / 0 : max * Math.sqrt(s));
};

Specifications

Browser compatibility

Desktop Mobile
Chrome Edge Firefox Internet Explorer Opera Safari WebView Android Chrome Android Firefox for Android Opera Android Safari on IOS Samsung Internet
hypot
38
12
27
No
25
8
38
38
27
25
8
3.0

See also

© 2005–2021 MDN contributors.
Licensed under the Creative Commons Attribution-ShareAlike License v2.5 or later.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/hypot