Language.Haskell.TH
Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Description
The public face of Template Haskell
For other documentation, refer to: http://www.haskell.org/haskellwiki/Template_Haskell
The monad and its operations
Instances
runQ :: Quasi m => Q a -> m a Source
Administration: errors, locations and IO
reportError :: String -> Q () Source
Report an error to the user, but allow the current splice's computation to carry on. To abort the computation, use fail
.
reportWarning :: String -> Q () Source
Report a warning to the user, and carry on.
report :: Bool -> String -> Q () Source
Deprecated: Use reportError or reportWarning instead
Report an error (True) or warning (False), but carry on; use fail
to stop.
Recover from errors raised by reportError
or fail
.
The location at which this computation is spliced.
Constructors
Loc | |
Fields
|
Instances
Eq Loc | |
Data Loc | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Loc -> c Loc Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Loc Source toConstr :: Loc -> Constr Source dataTypeOf :: Loc -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Loc) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Loc) Source gmapT :: (forall b. Data b => b -> b) -> Loc -> Loc Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r Source gmapQ :: (forall d. Data d => d -> u) -> Loc -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Loc -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Loc -> m Loc Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc Source | |
Ord Loc | |
Show Loc | |
Generic Loc | |
Ppr Loc | |
type Rep Loc | |
Defined in Language.Haskell.TH.Syntax type Rep Loc = D1 ('MetaData "Loc" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Loc" 'PrefixI 'True) ((S1 ('MetaSel ('Just "loc_filename") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: S1 ('MetaSel ('Just "loc_package") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :*: (S1 ('MetaSel ('Just "loc_module") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: (S1 ('MetaSel ('Just "loc_start") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 CharPos) :*: S1 ('MetaSel ('Just "loc_end") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 CharPos))))) |
The runIO
function lets you run an I/O computation in the Q
monad. Take care: you are guaranteed the ordering of calls to runIO
within a single Q
computation, but not about the order in which splices are run.
Note: for various murky reasons, stdout and stderr handles are not necessarily flushed when the compiler finishes running, so you should flush them yourself.
Querying the compiler
Reify
reify :: Name -> Q Info Source
reify
looks up information about the Name
.
It is sometimes useful to construct the argument name using lookupTypeName
or lookupValueName
to ensure that we are reifying from the right namespace. For instance, in this context:
data D = D
which D
does reify (mkName "D")
return information about? (Answer: D
-the-type, but don't rely on it.) To ensure we get information about D
-the-value, use lookupValueName
:
do Just nm <- lookupValueName "D" reify nm
and to get information about D
-the-type, use lookupTypeName
.
reifyModule :: Module -> Q ModuleInfo Source
reifyModule mod
looks up information about module mod
. To look up the current module, call this function with the return value of thisModule
.
Obtained from reify
in the Q
Monad.
Constructors
ClassI Dec [InstanceDec] | A class, with a list of its visible instances |
ClassOpI Name Type ParentName | A class method |
TyConI Dec | A "plain" type constructor. "Fancier" type constructors are returned using |
FamilyI Dec [InstanceDec] | A type or data family, with a list of its visible instances. A closed type family is returned with 0 instances. |
PrimTyConI Name Arity Unlifted | A "primitive" type constructor, which can't be expressed with a |
DataConI Name Type ParentName | A data constructor |
PatSynI Name PatSynType | A pattern synonym |
VarI Name Type (Maybe Dec) |
A "value" variable (as opposed to a type variable, see The |
TyVarI Name Type |
A type variable. The |
Instances
data ModuleInfo Source
Obtained from reifyModule
in the Q
Monad.
Constructors
ModuleInfo [Module] | Contains the import list of the module. |
Instances
type InstanceDec = Dec Source
InstanceDec
desribes a single instance of a class or type function. It is just a Dec
, but guaranteed to be one of the following:
-
InstanceD
(with empty[Dec]
) -
DataInstD
orNewtypeInstD
(with empty derived[Name]
) TySynInstD
type ParentName = Name Source
In ClassOpI
and DataConI
, name of the parent class or type
In UnboxedSumE
and UnboxedSumP
, the number associated with a particular data constructor. SumAlt
s are one-indexed and should never exceed the value of its corresponding SumArity
. For example:
-
(#_|#)
hasSumAlt
1 (out of a totalSumArity
of 2) -
(#|_#)
hasSumAlt
2 (out of a totalSumArity
of 2)
In UnboxedSumE
, UnboxedSumT
, and UnboxedSumP
, the total number of SumAlt
s. For example, (#|#)
has a SumArity
of 2.
In PrimTyConI
, arity of the type constructor
In PrimTyConI
, is the type constructor unlifted?
Language extension lookup
The language extensions known to GHC.
Note that there is an orphan Binary
instance for this type supplied by the GHC.LanguageExtensions module provided by ghc-boot
. We can't provide here as this would require adding transitive dependencies to the template-haskell
package, which must have a minimal dependency set.
Constructors
Instances
Bounded Extension | |
Enum Extension | |
Defined in GHC.LanguageExtensions.Type Methodssucc :: Extension -> Extension Source pred :: Extension -> Extension Source toEnum :: Int -> Extension Source fromEnum :: Extension -> Int Source enumFrom :: Extension -> [Extension] Source enumFromThen :: Extension -> Extension -> [Extension] Source enumFromTo :: Extension -> Extension -> [Extension] Source enumFromThenTo :: Extension -> Extension -> Extension -> [Extension] Source | |
Eq Extension | |
Show Extension | |
Generic Extension | |
type Rep Extension | |
Defined in GHC.LanguageExtensions.Type type Rep Extension = D1 ('MetaData "Extension" "GHC.LanguageExtensions.Type" "ghc-boot-th-8.10.2" 'False) ((((((C1 ('MetaCons "Cpp" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "OverlappingInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UndecidableInstances" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "IncoherentInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UndecidableSuperClasses" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "MonomorphismRestriction" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MonoPatBinds" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: ((C1 ('MetaCons "MonoLocalBinds" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "RelaxedPolyRec" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExtendedDefaultRules" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "ForeignFunctionInterface" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UnliftedFFITypes" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "InterruptibleFFI" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "CApiFFI" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: (((C1 ('MetaCons "GHCForeignImportPrim" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "JavaScriptFFI" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ParallelArrays" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "Arrows" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TemplateHaskell" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "TemplateHaskellQuotes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "QuasiQuotes" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "ImplicitParams" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ImplicitPrelude" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ScopedTypeVariables" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "AllowAmbiguousTypes" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "UnboxedTuples" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UnboxedSums" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "UnliftedNewtypes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "BangPatterns" 'PrefixI 'False) (U1 :: Type -> Type)))))) :+: ((((C1 ('MetaCons "TypeFamilies" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "TypeFamilyDependencies" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TypeInType" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "OverloadedStrings" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OverloadedLists" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "NumDecimals" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DisambiguateRecordFields" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "RecordWildCards" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RecordPuns" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ViewPatterns" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "GADTs" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "GADTSyntax" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NPlusKPatterns" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "DoAndIfThenElse" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "BlockArguments" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: (((C1 ('MetaCons "RebindableSyntax" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "ConstraintKinds" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "PolyKinds" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "DataKinds" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "InstanceSigs" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ApplicativeDo" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StandaloneDeriving" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "DeriveDataTypeable" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "AutoDeriveTypeable" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "DeriveFunctor" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeriveTraversable" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "DeriveFoldable" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeriveGeneric" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "DefaultSignatures" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeriveAnyClass" 'PrefixI 'False) (U1 :: Type -> Type))))))) :+: (((((C1 ('MetaCons "DeriveLift" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "DerivingStrategies" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DerivingVia" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "TypeSynonymInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "FlexibleContexts" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "FlexibleInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ConstrainedClassMethods" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "MultiParamTypeClasses" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NullaryTypeClasses" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "FunctionalDependencies" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UnicodeSyntax" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "ExistentialQuantification" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MagicHash" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "EmptyDataDecls" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "KindSignatures" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: (((C1 ('MetaCons "RoleAnnotations" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "ParallelListComp" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TransformListComp" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "MonadComprehensions" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "GeneralizedNewtypeDeriving" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "RecursiveDo" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "PostfixOperators" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "TupleSections" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "PatternGuards" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "LiberalTypeSynonyms" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RankNTypes" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "ImpredicativeTypes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TypeOperators" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ExplicitNamespaces" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "PackageImports" 'PrefixI 'False) (U1 :: Type -> Type)))))) :+: ((((C1 ('MetaCons "ExplicitForAll" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "AlternativeLayoutRule" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "AlternativeLayoutRuleTransitional" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "DatatypeContexts" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NondecreasingIndentation" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "RelaxedLayout" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TraditionalRecordSyntax" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "LambdaCase" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MultiWayIf" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "BinaryLiterals" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NegativeLiterals" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "HexFloatLiterals" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DuplicateRecordFields" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "OverloadedLabels" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "EmptyCase" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: (((C1 ('MetaCons "PatternSynonyms" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "PartialTypeSignatures" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NamedWildCards" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "StaticPointers" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TypeApplications" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "Strict" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StrictData" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "MonadFailDesugaring" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "EmptyDataDeriving" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "NumericUnderscores" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "QuantifiedConstraints" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "StarIsType" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ImportQualifiedPost" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "CUSKs" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StandaloneKindSignatures" 'PrefixI 'False) (U1 :: Type -> Type)))))))) |
extsEnabled :: Q [Extension] Source
List all enabled language extensions.
isExtEnabled :: Extension -> Q Bool Source
Determine whether the given language extension is enabled in the Q
monad.
Name lookup
lookupTypeName :: String -> Q (Maybe Name) Source
Look up the given name in the (type namespace of the) current splice's scope. See Language.Haskell.TH.Syntax for more details.
lookupValueName :: String -> Q (Maybe Name) Source
Look up the given name in the (value namespace of the) current splice's scope. See Language.Haskell.TH.Syntax for more details.
Fixity lookup
reifyFixity :: Name -> Q (Maybe Fixity) Source
reifyFixity nm
attempts to find a fixity declaration for nm
. For example, if the function foo
has the fixity declaration infixr 7 foo
, then reifyFixity 'foo
would return Just (Fixity 7 InfixR)
. If the function bar
does not have a fixity declaration, then reifyFixity 'bar
returns Nothing
, so you may assume bar
has defaultFixity
.
Type lookup
reifyType :: Name -> Q Type Source
reifyType nm
attempts to find the type or kind of nm
. For example, reifyType 'not
returns Bool -> Bool
, and reifyType ''Bool
returns Type
. This works even if there's no explicit signature and the type or kind is inferred.
Instance lookup
reifyInstances :: Name -> [Type] -> Q [InstanceDec] Source
reifyInstances nm tys
returns a list of visible instances of nm tys
. That is, if nm
is the name of a type class, then all instances of this class at the types tys
are returned. Alternatively, if nm
is the name of a data family or type family, all instances of this family at the types tys
are returned.
Note that this is a "shallow" test; the declarations returned merely have instance heads which unify with nm tys
, they need not actually be satisfiable.
-
reifyInstances ''Eq [ TupleT 2 `AppT` ConT ''A `AppT` ConT ''B ]
contains theinstance (Eq a, Eq b) => Eq (a, b)
regardless of whetherA
andB
themselves implementEq
-
reifyInstances ''Show [ VarT (mkName "a") ]
produces every available instance ofEq
There is one edge case: reifyInstances ''Typeable tys
currently always produces an empty list (no matter what tys
are given).
isInstance :: Name -> [Type] -> Q Bool Source
Is the list of instances returned by reifyInstances
nonempty?
Roles lookup
reifyRoles :: Name -> Q [Role] Source
reifyRoles nm
returns the list of roles associated with the parameters of the tycon nm
. Fails if nm
cannot be found or is not a tycon. The returned list should never contain InferR
.
Annotation lookup
reifyAnnotations :: Data a => AnnLookup -> Q [a] Source
reifyAnnotations target
returns the list of annotations associated with target
. Only the annotations that are appropriately typed is returned. So if you have Int
and String
annotations for the same target, you have to call this function twice.
Annotation target for reifyAnnotations
Constructors
AnnLookupModule Module | |
AnnLookupName Name |
Instances
Eq AnnLookup | |
Data AnnLookup | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnLookup -> c AnnLookup Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnLookup Source toConstr :: AnnLookup -> Constr Source dataTypeOf :: AnnLookup -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnLookup) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnLookup) Source gmapT :: (forall b. Data b => b -> b) -> AnnLookup -> AnnLookup Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r Source gmapQ :: (forall d. Data d => d -> u) -> AnnLookup -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnLookup -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup Source | |
Ord AnnLookup | |
Defined in Language.Haskell.TH.Syntax | |
Show AnnLookup | |
Generic AnnLookup | |
type Rep AnnLookup | |
Defined in Language.Haskell.TH.Syntax type Rep AnnLookup = D1 ('MetaData "AnnLookup" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "AnnLookupModule" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Module)) :+: C1 ('MetaCons "AnnLookupName" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name))) |
Constructor strictness lookup
reifyConStrictness :: Name -> Q [DecidedStrictness] Source
reifyConStrictness nm
looks up the strictness information for the fields of the constructor with the name nm
. Note that the strictness information that reifyConStrictness
returns may not correspond to what is written in the source code. For example, in the following data declaration:
data Pair a = Pair a a
reifyConStrictness
would return [DecidedLazy, DecidedLazy]
under most circumstances, but it would return [DecidedStrict, DecidedStrict]
if the -XStrictData
language extension was enabled.
Typed expressions
data TExp (a :: TYPE (r :: RuntimeRep)) Source
Represents an expression which has type a
. Built on top of Exp
, typed expressions allow for type-safe splicing via:
- typed quotes, written as
[|| ... ||]
where...
is an expression; if that expression has typea
, then the quotation has typeQ (TExp a)
- typed splices inside of typed quotes, written as
$$(...)
where...
is an arbitrary expression of typeQ (TExp a)
Traditional expression quotes and splices let us construct ill-typed expressions:
>>> fmap ppr $ runQ [| True == $( [| "foo" |] ) |] GHC.Types.True GHC.Classes.== "foo" >>> GHC.Types.True GHC.Classes.== "foo" <interactive> error: • Couldn't match expected type ‘Bool’ with actual type ‘[Char]’ • In the second argument of ‘(==)’, namely ‘"foo"’ In the expression: True == "foo" In an equation for ‘it’: it = True == "foo"
With typed expressions, the type error occurs when constructing the Template Haskell expression:
>>> fmap ppr $ runQ [|| True == $$( [|| "foo" ||] ) ||] <interactive> error: • Couldn't match type ‘[Char]’ with ‘Bool’ Expected type: Q (TExp Bool) Actual type: Q (TExp [Char]) • In the Template Haskell quotation [|| "foo" ||] In the expression: [|| "foo" ||] In the Template Haskell splice $$([|| "foo" ||])
unType :: TExp a -> Exp Source
Underlying untyped Template Haskell expression
Names
An abstract type representing names in the syntax tree.
Name
s can be constructed in several ways, which come with different name-capture guarantees (see Language.Haskell.TH.Syntax for an explanation of name capture):
- the built-in syntax
'f
and''T
can be used to construct names, The expression'f
gives aName
which refers to the valuef
currently in scope, and''T
gives aName
which refers to the typeT
currently in scope. These names can never be captured. -
lookupValueName
andlookupTypeName
are similar to'f
and''T
respectively, but theName
s are looked up at the point where the current splice is being run. These names can never be captured. -
newName
monadically generates a new name, which can never be captured. -
mkName
generates a capturable name.
Names constructed using newName
and mkName
may be used in bindings (such as let x = ...
or x -> ...
), but names constructed using lookupValueName
, lookupTypeName
, 'f
, ''T
may not.
Instances
Eq Name | |
Data Name | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name Source toConstr :: Name -> Constr Source dataTypeOf :: Name -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) Source gmapT :: (forall b. Data b => b -> b) -> Name -> Name Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r Source gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name Source | |
Ord Name | |
Defined in Language.Haskell.TH.Syntax | |
Show Name | |
Generic Name | |
Ppr Name | |
type Rep Name | |
Defined in Language.Haskell.TH.Syntax type Rep Name = D1 ('MetaData "Name" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Name" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 OccName) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 NameFlavour))) |
Instances
Eq NameSpace | |
Data NameSpace | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameSpace -> c NameSpace Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameSpace Source toConstr :: NameSpace -> Constr Source dataTypeOf :: NameSpace -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameSpace) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameSpace) Source gmapT :: (forall b. Data b => b -> b) -> NameSpace -> NameSpace Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r Source gmapQ :: (forall d. Data d => d -> u) -> NameSpace -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> NameSpace -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace Source | |
Ord NameSpace | |
Defined in Language.Haskell.TH.Syntax | |
Show NameSpace | |
Generic NameSpace | |
type Rep NameSpace | |
Defined in Language.Haskell.TH.Syntax type Rep NameSpace = D1 ('MetaData "NameSpace" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "VarName" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "DataName" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TcClsName" 'PrefixI 'False) (U1 :: Type -> Type))) |
Constructing names
mkName :: String -> Name Source
Generate a capturable name. Occurrences of such names will be resolved according to the Haskell scoping rules at the occurrence site.
For example:
f = [| pi + $(varE (mkName "pi")) |] ... g = let pi = 3 in $f
In this case, g
is desugared to
g = Prelude.pi + 3
Note that mkName
may be used with qualified names:
mkName "Prelude.pi"
See also dyn
for a useful combinator. The above example could be rewritten using dyn
as
f = [| pi + $(dyn "pi") |]
newName :: String -> Q Name Source
Generate a fresh name, which cannot be captured.
For example, this:
f = $(do nm1 <- newName "x" let nm2 = mkName "x" return (LamE [VarP nm1] (LamE [VarP nm2] (VarE nm1))) )
will produce the splice
f = \x0 -> \x -> x0
In particular, the occurrence VarE nm1
refers to the binding VarP nm1
, and is not captured by the binding VarP nm2
.
Although names generated by newName
cannot be captured, they can capture other names. For example, this:
g = $(do nm1 <- newName "x" let nm2 = mkName "x" return (LamE [VarP nm2] (LamE [VarP nm1] (VarE nm2))) )
will produce the splice
g = \x -> \x0 -> x0
since the occurrence VarE nm2
is captured by the innermost binding of x
, namely VarP nm1
.
Deconstructing names
nameBase :: Name -> String Source
The name without its module prefix.
Examples
>>> nameBase ''Data.Either.Either "Either" >>> nameBase (mkName "foo") "foo" >>> nameBase (mkName "Module.foo") "foo"
nameModule :: Name -> Maybe String Source
Module prefix of a name, if it exists.
Examples
>>> nameModule ''Data.Either.Either Just "Data.Either" >>> nameModule (mkName "foo") Nothing >>> nameModule (mkName "Module.foo") Just "Module"
namePackage :: Name -> Maybe String Source
A name's package, if it exists.
Examples
>>> namePackage ''Data.Either.Either Just "base" >>> namePackage (mkName "foo") Nothing >>> namePackage (mkName "Module.foo") Nothing
nameSpace :: Name -> Maybe NameSpace Source
Returns whether a name represents an occurrence of a top-level variable (VarName
), data constructor (DataName
), type constructor, or type class (TcClsName
). If we can't be sure, it returns Nothing
.
Examples
>>> nameSpace 'Prelude.id Just VarName >>> nameSpace (mkName "id") Nothing -- only works for top-level variable names >>> nameSpace 'Data.Maybe.Just Just DataName >>> nameSpace ''Data.Maybe.Maybe Just TcClsName >>> nameSpace ''Data.Ord.Ord Just TcClsName
Built-in names
tupleTypeName :: Int -> Name Source
Tuple type constructor
tupleDataName :: Int -> Name Source
Tuple data constructor
unboxedTupleTypeName :: Int -> Name Source
Unboxed tuple type constructor
unboxedTupleDataName :: Int -> Name Source
Unboxed tuple data constructor
unboxedSumTypeName :: SumArity -> Name Source
Unboxed sum type constructor
unboxedSumDataName :: SumAlt -> SumArity -> Name Source
Unboxed sum data constructor
The algebraic data types
The lowercase versions (syntax operators) of these constructors are preferred to these constructors, since they compose better with quotations ([| |]
) and splices ($( ... )
)
Declarations
Constructors
FunD Name [Clause] | { f p1 p2 = b where decs } |
ValD Pat Body [Dec] | { p = b where decs } |
DataD Cxt Name [TyVarBndr] (Maybe Kind) [Con] [DerivClause] | { data Cxt x => T x = A x | B (T x) deriving (Z,W) deriving stock Eq } |
NewtypeD Cxt Name [TyVarBndr] (Maybe Kind) Con [DerivClause] | { newtype Cxt x => T x = A (B x) deriving (Z,W Q) deriving stock Eq } |
TySynD Name [TyVarBndr] Type | { type T x = (x,x) } |
ClassD Cxt Name [TyVarBndr] [FunDep] [Dec] | { class Eq a => Ord a where ds } |
InstanceD (Maybe Overlap) Cxt Type [Dec] | { instance {-# OVERLAPS #-} Show w => Show [w] where ds } |
SigD Name Type | { length :: [a] -> Int } |
KiSigD Name Kind | { type TypeRep :: k -> Type } |
ForeignD Foreign | { foreign import ... } { foreign export ... } |
InfixD Fixity Name | { infix 3 foo } |
PragmaD Pragma | { {-# INLINE [1] foo #-} } |
DataFamilyD Name [TyVarBndr] (Maybe Kind) | { data family T a b c :: * } |
DataInstD Cxt (Maybe [TyVarBndr]) Type (Maybe Kind) [Con] [DerivClause] | { data instance Cxt x => T [x] = A x | B (T x) deriving (Z,W) deriving stock Eq } |
NewtypeInstD Cxt (Maybe [TyVarBndr]) Type (Maybe Kind) Con [DerivClause] | { newtype instance Cxt x => T [x] = A (B x) deriving (Z,W) deriving stock Eq } |
TySynInstD TySynEqn | { type instance ... } |
OpenTypeFamilyD TypeFamilyHead | { type family T a b c = (r :: *) | r -> a b } |
ClosedTypeFamilyD TypeFamilyHead [TySynEqn] | { type family F a b = (r :: *) | r -> a where ... } |
RoleAnnotD Name [Role] | { type role T nominal representational } |
StandaloneDerivD (Maybe DerivStrategy) Cxt Type | { deriving stock instance Ord a => Ord (Foo a) } |
DefaultSigD Name Type | { default size :: Data a => a -> Int } |
PatSynD Name PatSynArgs PatSynDir Pat |
also, besides prefix pattern synonyms, both infix and record pattern synonyms are supported. See |
PatSynSigD Name PatSynType | A pattern synonym's type signature. |
ImplicitParamBindD String Exp |
{ ?x = expr } Implicit parameter binding declaration. Can only be used in let and where clauses which consist entirely of implicit bindings. |
Instances
A single data constructor.
The constructors for Con
can roughly be divided up into two categories: those for constructors with "vanilla" syntax (NormalC
, RecC
, and InfixC
), and those for constructors with GADT syntax (GadtC
and RecGadtC
). The ForallC
constructor, which quantifies additional type variables and class contexts, can surround either variety of constructor. However, the type variables that it quantifies are different depending on what constructor syntax is used:
- If a
ForallC
surrounds a constructor with vanilla syntax, then theForallC
will only quantify existential type variables. For example:
data Foo a = forall b. MkFoo a b
In MkFoo
, ForallC
will quantify b
, but not a
.
- If a
ForallC
surrounds a constructor with GADT syntax, then theForallC
will quantify all type variables used in the constructor. For example:
data Bar a b where MkBar :: (a ~ b) => c -> MkBar a b
In MkBar
, ForallC
will quantify a
, b
, and c
.
Constructors
NormalC Name [BangType] | C Int a |
RecC Name [VarBangType] | C { v :: Int, w :: a } |
InfixC BangType Name BangType | Int :+ a |
ForallC [TyVarBndr] Cxt Con | forall a. Eq a => C [a] |
GadtC [Name] [BangType] Type | C :: a -> b -> T b Int |
RecGadtC [Name] [VarBangType] Type | C :: { v :: Int } -> T b Int |
Instances
Instances
Eq Clause | |
Data Clause | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Clause -> c Clause Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Clause Source toConstr :: Clause -> Constr Source dataTypeOf :: Clause -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Clause) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause) Source gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r Source gmapQ :: (forall d. Data d => d -> u) -> Clause -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Clause -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Clause -> m Clause Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause Source | |
Ord Clause | |
Defined in Language.Haskell.TH.Syntax | |
Show Clause | |
Generic Clause | |
Ppr Clause | |
type Rep Clause | |
Defined in Language.Haskell.TH.Syntax type Rep Clause = D1 ('MetaData "Clause" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Clause" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Pat]) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Body) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec])))) |
data SourceUnpackedness Source
Constructors
NoSourceUnpackedness | C a |
SourceNoUnpack | C { {-# NOUNPACK #-} } a |
SourceUnpack | C { {-# UNPACK #-} } a |
Instances
data SourceStrictness Source
Constructors
NoSourceStrictness | C a |
SourceLazy | C {~}a |
SourceStrict | C {!}a |
Instances
data DecidedStrictness Source
Unlike SourceStrictness
and SourceUnpackedness
, DecidedStrictness
refers to the strictness that the compiler chooses for a data constructor field, which may be different from what is written in source code. See reifyConStrictness
for more information.
Constructors
DecidedLazy | |
DecidedStrict | |
DecidedUnpack |
Instances
Constructors
Bang SourceUnpackedness SourceStrictness | C { {-# UNPACK #-} !}a |
Instances
Eq Bang | |
Data Bang | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bang -> c Bang Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bang Source toConstr :: Bang -> Constr Source dataTypeOf :: Bang -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bang) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bang) Source gmapT :: (forall b. Data b => b -> b) -> Bang -> Bang Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r Source gmapQ :: (forall d. Data d => d -> u) -> Bang -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Bang -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bang -> m Bang Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang Source | |
Ord Bang | |
Defined in Language.Haskell.TH.Syntax | |
Show Bang | |
Generic Bang | |
Ppr Bang | |
type Rep Bang | |
Defined in Language.Haskell.TH.Syntax type Rep Bang = D1 ('MetaData "Bang" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Bang" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SourceUnpackedness) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SourceStrictness))) |
As of template-haskell-2.11.0.0
, Strict
has been replaced by Bang
.
Instances
Constructors
CCall | |
StdCall | |
CApi | |
Prim | |
JavaScript |
Instances
Eq Callconv | |
Data Callconv | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Callconv -> c Callconv Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Callconv Source toConstr :: Callconv -> Constr Source dataTypeOf :: Callconv -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Callconv) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Callconv) Source gmapT :: (forall b. Data b => b -> b) -> Callconv -> Callconv Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r Source gmapQ :: (forall d. Data d => d -> u) -> Callconv -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Callconv -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv Source | |
Ord Callconv | |
Defined in Language.Haskell.TH.Syntax | |
Show Callconv | |
Generic Callconv | |
type Rep Callconv | |
Defined in Language.Haskell.TH.Syntax type Rep Callconv = D1 ('MetaData "Callconv" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "CCall" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StdCall" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "CApi" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "Prim" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "JavaScript" 'PrefixI 'False) (U1 :: Type -> Type)))) |
Constructors
Unsafe | |
Safe | |
Interruptible |
Instances
Eq Safety | |
Data Safety | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety -> c Safety Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Safety Source toConstr :: Safety -> Constr Source dataTypeOf :: Safety -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Safety) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety) Source gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r Source gmapQ :: (forall d. Data d => d -> u) -> Safety -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety -> m Safety Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety Source | |
Ord Safety | |
Defined in Language.Haskell.TH.Syntax | |
Show Safety | |
Generic Safety | |
type Rep Safety | |
Defined in Language.Haskell.TH.Syntax |
Constructors
InlineP Name Inline RuleMatch Phases | |
SpecialiseP Name Type (Maybe Inline) Phases | |
SpecialiseInstP Type | |
RuleP String (Maybe [TyVarBndr]) [RuleBndr] Exp Exp Phases | |
AnnP AnnTarget Exp | |
LineP Int String | |
CompleteP [Name] (Maybe Name) | { {-# COMPLETE C_1, ..., C_i [ :: T ] #-} } |
Instances
Instances
Eq Inline | |
Data Inline | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Inline -> c Inline Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Inline Source toConstr :: Inline -> Constr Source dataTypeOf :: Inline -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Inline) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Inline) Source gmapT :: (forall b. Data b => b -> b) -> Inline -> Inline Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r Source gmapQ :: (forall d. Data d => d -> u) -> Inline -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Inline -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Inline -> m Inline Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline Source | |
Ord Inline | |
Defined in Language.Haskell.TH.Syntax | |
Show Inline | |
Generic Inline | |
Ppr Inline | |
type Rep Inline | |
Defined in Language.Haskell.TH.Syntax |
Instances
Eq RuleMatch | |
Data RuleMatch | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleMatch -> c RuleMatch Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleMatch Source toConstr :: RuleMatch -> Constr Source dataTypeOf :: RuleMatch -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleMatch) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleMatch) Source gmapT :: (forall b. Data b => b -> b) -> RuleMatch -> RuleMatch Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r Source gmapQ :: (forall d. Data d => d -> u) -> RuleMatch -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleMatch -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch Source | |
Ord RuleMatch | |
Defined in Language.Haskell.TH.Syntax | |
Show RuleMatch | |
Generic RuleMatch | |
Ppr RuleMatch | |
type Rep RuleMatch | |
Constructors
AllPhases | |
FromPhase Int | |
BeforePhase Int |
Instances
Eq Phases | |
Data Phases | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Phases -> c Phases Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Phases Source toConstr :: Phases -> Constr Source dataTypeOf :: Phases -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Phases) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Phases) Source gmapT :: (forall b. Data b => b -> b) -> Phases -> Phases Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r Source gmapQ :: (forall d. Data d => d -> u) -> Phases -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Phases -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Phases -> m Phases Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases Source | |
Ord Phases | |
Defined in Language.Haskell.TH.Syntax | |
Show Phases | |
Generic Phases | |
Ppr Phases | |
type Rep Phases | |
Defined in Language.Haskell.TH.Syntax type Rep Phases = D1 ('MetaData "Phases" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "AllPhases" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "FromPhase" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)) :+: C1 ('MetaCons "BeforePhase" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)))) |
Constructors
RuleVar Name | |
TypedRuleVar Name Type |
Instances
Eq RuleBndr | |
Data RuleBndr | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleBndr -> c RuleBndr Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleBndr Source toConstr :: RuleBndr -> Constr Source dataTypeOf :: RuleBndr -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleBndr) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleBndr) Source gmapT :: (forall b. Data b => b -> b) -> RuleBndr -> RuleBndr Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r Source gmapQ :: (forall d. Data d => d -> u) -> RuleBndr -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleBndr -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr Source | |
Ord RuleBndr | |
Defined in Language.Haskell.TH.Syntax | |
Show RuleBndr | |
Generic RuleBndr | |
Ppr RuleBndr | |
type Rep RuleBndr | |
Defined in Language.Haskell.TH.Syntax type Rep RuleBndr = D1 ('MetaData "RuleBndr" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "RuleVar" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "TypedRuleVar" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))) |
Constructors
ModuleAnnotation | |
TypeAnnotation Name | |
ValueAnnotation Name |
Instances
Eq AnnTarget | |
Data AnnTarget | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnTarget -> c AnnTarget Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnTarget Source toConstr :: AnnTarget -> Constr Source dataTypeOf :: AnnTarget -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnTarget) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnTarget) Source gmapT :: (forall b. Data b => b -> b) -> AnnTarget -> AnnTarget Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r Source gmapQ :: (forall d. Data d => d -> u) -> AnnTarget -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnTarget -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget Source | |
Ord AnnTarget | |
Defined in Language.Haskell.TH.Syntax | |
Show AnnTarget | |
Generic AnnTarget | |
type Rep AnnTarget | |
Defined in Language.Haskell.TH.Syntax type Rep AnnTarget = D1 ('MetaData "AnnTarget" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "ModuleAnnotation" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "TypeAnnotation" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "ValueAnnotation" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)))) |
Instances
Eq FunDep | |
Data FunDep | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep -> c FunDep Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunDep Source toConstr :: FunDep -> Constr Source dataTypeOf :: FunDep -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunDep) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunDep) Source gmapT :: (forall b. Data b => b -> b) -> FunDep -> FunDep Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r Source gmapQ :: (forall d. Data d => d -> u) -> FunDep -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep Source | |
Ord FunDep | |
Defined in Language.Haskell.TH.Syntax | |
Show FunDep | |
Generic FunDep | |
Ppr FunDep | |
type Rep FunDep | |
Defined in Language.Haskell.TH.Syntax type Rep FunDep = D1 ('MetaData "FunDep" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "FunDep" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]))) |
One equation of a type family instance or closed type family. The arguments are the left-hand-side type and the right-hand-side result.
For instance, if you had the following type family:
type family Foo (a :: k) :: k where forall k (a :: k). Foo @k a = a
The Foo @k a = a
equation would be represented as follows:
TySynEqn (Just [PlainTV k, KindedTV a (VarT k)]) (AppT (AppKindT (ConT ''Foo) (VarT k)) (VarT a)) (VarT a)
Instances
Eq TySynEqn | |
Data TySynEqn | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TySynEqn -> c TySynEqn Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TySynEqn Source toConstr :: TySynEqn -> Constr Source dataTypeOf :: TySynEqn -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TySynEqn) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TySynEqn) Source gmapT :: (forall b. Data b => b -> b) -> TySynEqn -> TySynEqn Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r Source gmapQ :: (forall d. Data d => d -> u) -> TySynEqn -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> TySynEqn -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn Source | |
Ord TySynEqn | |
Defined in Language.Haskell.TH.Syntax | |
Show TySynEqn | |
Generic TySynEqn | |
type Rep TySynEqn | |
Defined in Language.Haskell.TH.Syntax type Rep TySynEqn = D1 ('MetaData "TySynEqn" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "TySynEqn" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe [TyVarBndr])) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) |
data TypeFamilyHead Source
Common elements of OpenTypeFamilyD
and ClosedTypeFamilyD
. By analogy with "head" for type classes and type class instances as defined in Type classes: an exploration of the design space, the TypeFamilyHead
is defined to be the elements of the declaration between type family
and where
.
Constructors
TypeFamilyHead Name [TyVarBndr] FamilyResultSig (Maybe InjectivityAnn) |
Instances
Constructors
Fixity Int FixityDirection |
Instances
Eq Fixity | |
Data Fixity | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity Source toConstr :: Fixity -> Constr Source dataTypeOf :: Fixity -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) Source gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r Source gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source | |
Ord Fixity | |
Defined in Language.Haskell.TH.Syntax | |
Show Fixity | |
Generic Fixity | |
type Rep Fixity | |
Defined in Language.Haskell.TH.Syntax type Rep Fixity = D1 ('MetaData "Fixity" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Fixity" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 FixityDirection))) |
data FixityDirection Source
Instances
defaultFixity :: Fixity Source
Default fixity: infixl 9
Highest allowed operator precedence for Fixity
constructor (answer: 9)
A pattern synonym's directionality.
Constructors
Unidir | pattern P x {<-} p |
ImplBidir | pattern P x {=} p |
ExplBidir [Clause] | pattern P x {<-} p where P x = e |
Instances
Eq PatSynDir | |
Data PatSynDir | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynDir -> c PatSynDir Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynDir Source toConstr :: PatSynDir -> Constr Source dataTypeOf :: PatSynDir -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynDir) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynDir) Source gmapT :: (forall b. Data b => b -> b) -> PatSynDir -> PatSynDir Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r Source gmapQ :: (forall d. Data d => d -> u) -> PatSynDir -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynDir -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir Source | |
Ord PatSynDir | |
Defined in Language.Haskell.TH.Syntax | |
Show PatSynDir | |
Generic PatSynDir | |
Ppr PatSynDir | |
type Rep PatSynDir | |
Defined in Language.Haskell.TH.Syntax type Rep PatSynDir = D1 ('MetaData "PatSynDir" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Unidir" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "ImplBidir" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExplBidir" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Clause])))) |
data PatSynArgs Source
A pattern synonym's argument type.
Constructors
PrefixPatSyn [Name] | pattern P {x y z} = p |
InfixPatSyn Name Name | pattern {x P y} = p |
RecordPatSyn [Name] | pattern P { {x,y,z} } = p |
Instances
Expressions
Constructors
VarE Name | { x } |
ConE Name | data T1 = C1 t1 t2; p = {C1} e1 e2 |
LitE Lit | { 5 or 'c'} |
AppE Exp Exp | { f x } |
AppTypeE Exp Type | { f @Int } |
InfixE (Maybe Exp) Exp (Maybe Exp) | {x + y} or {(x+)} or {(+ x)} or {(+)} |
UInfixE Exp Exp Exp |
{x + y} |
ParensE Exp |
{ (e) } |
LamE [Pat] Exp | { \ p1 p2 -> e } |
LamCaseE [Match] | { \case m1; m2 } |
TupE [Maybe Exp] |
{ (e1,e2) } The (1,) translates to TupE [Just (LitE (IntegerL 1)),Nothing] |
UnboxedTupE [Maybe Exp] |
{ (# e1,e2 #) } The (# 'c', #) translates to UnboxedTupE [Just (LitE (CharL 'c')),Nothing] |
UnboxedSumE Exp SumAlt SumArity | { (#|e|#) } |
CondE Exp Exp Exp | { if e1 then e2 else e3 } |
MultiIfE [(Guard, Exp)] | { if | g1 -> e1 | g2 -> e2 } |
LetE [Dec] Exp | { let { x=e1; y=e2 } in e3 } |
CaseE Exp [Match] | { case e of m1; m2 } |
DoE [Stmt] | { do { p <- e1; e2 } } |
MDoE [Stmt] | { mdo { x <- e1 y; y <- e2 x; } } |
CompE [Stmt] |
{ [ (x,y) | x <- xs, y <- ys ] } The result expression of the comprehension is the last of the E.g. translation: [ f x | x <- xs ] CompE [BindS (VarP x) (VarE xs), NoBindS (AppE (VarE f) (VarE x))] |
ArithSeqE Range | { [ 1 ,2 .. 10 ] } |
ListE [Exp] | { [1,2,3] } |
SigE Exp Type | { e :: t } |
RecConE Name [FieldExp] | { T { x = y, z = w } } |
RecUpdE Exp [FieldExp] | { (f x) { z = w } } |
StaticE Exp | { static e } |
UnboundVarE Name |
{ _x } This is used for holes or unresolved identifiers in AST quotes. Note that it could either have a variable name or constructor name. |
LabelE String |
|
ImplicitParamVarE String |
|
Instances
Instances
Eq Match | |
Data Match | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match -> c Match Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Match Source toConstr :: Match -> Constr Source dataTypeOf :: Match -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Match) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Match) Source gmapT :: (forall b. Data b => b -> b) -> Match -> Match Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r Source gmapQ :: (forall d. Data d => d -> u) -> Match -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Match -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match -> m Match Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match Source | |
Ord Match | |
Defined in Language.Haskell.TH.Syntax | |
Show Match | |
Generic Match | |
Ppr Match | |
type Rep Match | |
Defined in Language.Haskell.TH.Syntax type Rep Match = D1 ('MetaData "Match" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Match" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Body) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec])))) |
Constructors
GuardedB [(Guard, Exp)] | f p { | e1 = e2 | e3 = e4 } where ds |
NormalB Exp | f p { = e } where ds |
Instances
Eq Body | |
Data Body | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Body -> c Body Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Body Source toConstr :: Body -> Constr Source dataTypeOf :: Body -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Body) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Body) Source gmapT :: (forall b. Data b => b -> b) -> Body -> Body Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r Source gmapQ :: (forall d. Data d => d -> u) -> Body -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Body -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Body -> m Body Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body Source | |
Ord Body | |
Defined in Language.Haskell.TH.Syntax | |
Show Body | |
Generic Body | |
type Rep Body | |
Defined in Language.Haskell.TH.Syntax type Rep Body = D1 ('MetaData "Body" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "GuardedB" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [(Guard, Exp)])) :+: C1 ('MetaCons "NormalB" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))) |
Instances
Eq Guard | |
Data Guard | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Guard -> c Guard Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Guard Source toConstr :: Guard -> Constr Source dataTypeOf :: Guard -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Guard) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Guard) Source gmapT :: (forall b. Data b => b -> b) -> Guard -> Guard Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r Source gmapQ :: (forall d. Data d => d -> u) -> Guard -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Guard -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Guard -> m Guard Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard Source | |
Ord Guard | |
Defined in Language.Haskell.TH.Syntax | |
Show Guard | |
Generic Guard | |
type Rep Guard | |
Defined in Language.Haskell.TH.Syntax type Rep Guard = D1 ('MetaData "Guard" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "NormalG" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)) :+: C1 ('MetaCons "PatG" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Stmt]))) |
Constructors
BindS Pat Exp | p <- e |
LetS [Dec] | { let { x=e1; y=e2 } } |
NoBindS Exp | e |
ParS [[Stmt]] |
|
RecS [Stmt] | rec { s1; s2 } |
Instances
Instances
Constructors
CharL Char | |
StringL String | |
IntegerL Integer | Used for overloaded and non-overloaded literals. We don't have a good way to represent non-overloaded literals at the moment. Maybe that doesn't matter? |
RationalL Rational | |
IntPrimL Integer | |
WordPrimL Integer | |
FloatPrimL Rational | |
DoublePrimL Rational | |
StringPrimL [Word8] | A primitive C-style string, type |
BytesPrimL Bytes | Some raw bytes, type |
CharPrimL Char |
Instances
Patterns
Pattern in Haskell given in {}
Constructors
LitP Lit | { 5 or 'c' } |
VarP Name | { x } |
TupP [Pat] | { (p1,p2) } |
UnboxedTupP [Pat] | { (# p1,p2 #) } |
UnboxedSumP Pat SumAlt SumArity | { (#|p|#) } |
ConP Name [Pat] | data T1 = C1 t1 t2; {C1 p1 p1} = e |
InfixP Pat Name Pat | foo ({x :+ y}) = e |
UInfixP Pat Name Pat |
foo ({x :+ y}) = e |
ParensP Pat |
{(p)} |
TildeP Pat | { ~p } |
BangP Pat | { !p } |
AsP Name Pat | { x @ p } |
WildP | { _ } |
RecP Name [FieldPat] | f (Pt { pointx = x }) = g x |
ListP [Pat] | { [1,2,3] } |
SigP Pat Type | { p :: t } |
ViewP Exp Pat | { e -> p } |
Instances
type FieldExp = (Name, Exp) Source
type FieldPat = (Name, Pat) Source
Types
Constructors
ForallT [TyVarBndr] Cxt Type | forall <vars>. <ctxt> => <type> |
ForallVisT [TyVarBndr] Type | forall <vars> -> <type> |
AppT Type Type | T a b |
AppKindT Type Kind | T @k t |
SigT Type Kind | t :: k |
VarT Name | a |
ConT Name | T |
PromotedT Name | 'T |
InfixT Type Name Type | T + T |
UInfixT Type Name Type |
T + T |
ParensT Type | (T) |
TupleT Int | (,), (,,), etc. |
UnboxedTupleT Int | (#,#), (#,,#), etc. |
UnboxedSumT SumArity | (#|#), (#||#), etc. |
ArrowT | -> |
EqualityT | ~ |
ListT | [] |
PromotedTupleT Int | '(), '(,), '(,,), etc. |
PromotedNilT | '[] |
PromotedConsT | (':) |
StarT | * |
ConstraintT | Constraint |
LitT TyLit | 0,1,2, etc. |
WildCardT | _ |
ImplicitParamT String Type | ?x :: t |
Instances
Instances
Instances
Eq TyLit | |
Data TyLit | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit Source toConstr :: TyLit -> Constr Source dataTypeOf :: TyLit -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) Source gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r Source gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit Source | |
Ord TyLit | |
Defined in Language.Haskell.TH.Syntax | |
Show TyLit | |
Generic TyLit | |
Ppr TyLit | |
type Rep TyLit | |
Defined in Language.Haskell.TH.Syntax type Rep TyLit = D1 ('MetaData "TyLit" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "NumTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Integer)) :+: C1 ('MetaCons "StrTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String))) |
To avoid duplication between kinds and types, they are defined to be the same. Naturally, you would never have a type be StarT
and you would never have a kind be SigT
, but many of the other constructors are shared. Note that the kind Bool
is denoted with ConT
, not PromotedT
. Similarly, tuple kinds are made with TupleT
, not PromotedTupleT
.
Arguments
= [Pred] | (Eq a, Ord b) |
Since the advent of ConstraintKinds
, constraints are really just types. Equality constraints use the EqualityT
constructor. Constraints may also be tuples of other constraints.
Role annotations
Constructors
NominalR | nominal |
RepresentationalR | representational |
PhantomR | phantom |
InferR | _ |
Instances
Eq Role | |
Data Role | |
Defined in Language.Haskell.TH.Syntax Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role Source toConstr :: Role -> Constr Source dataTypeOf :: Role -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) Source gmapT :: (forall b. Data b => b -> b) -> Role -> Role Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r Source gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role Source | |
Ord Role | |
Defined in Language.Haskell.TH.Syntax | |
Show Role | |
Generic Role | |
Ppr Role | |
type Rep Role | |
Defined in Language.Haskell.TH.Syntax type Rep Role = D1 ('MetaData "Role" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "NominalR" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RepresentationalR" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "PhantomR" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "InferR" 'PrefixI 'False) (U1 :: Type -> Type))) |
data FamilyResultSig Source
Type family result signature
Instances
data InjectivityAnn Source
Injectivity annotation
Constructors
InjectivityAnn Name [Name] |
Instances
type PatSynType = Type Source
A pattern synonym's type. Note that a pattern synonym's fully specified type has a peculiar shape coming with two forall quantifiers and two constraint contexts. For example, consider the pattern synonym
pattern P x1 x2 ... xn = <some-pattern>
P's complete type is of the following form
pattern P :: forall universals. required constraints => forall existentials. provided constraints => t1 -> t2 -> ... -> tn -> t
consisting of four parts:
- the (possibly empty lists of) universally quantified type variables and required constraints on them.
- the (possibly empty lists of) existentially quantified type variables and the provided constraints on them.
- the types
t1
,t2
, ..,tn
ofx1
,x2
, ..,xn
, respectively - the type
t
of<some-pattern>
, mentioning only universals.
Pattern synonym types interact with TH when (a) reifying a pattern synonym, (b) pretty printing, or (c) specifying a pattern synonym's type signature explicitly:
- Reification always returns a pattern synonym's fully specified type in abstract syntax.
- Pretty printing via
pprPatSynType
abbreviates a pattern synonym's type unambiguously in concrete syntax: The rule of thumb is to print initial empty universals and the required context as() =>
, if existentials and a provided context follow. If only universals and their required context, but no existentials are specified, only the universals and their required context are printed. If both or none are specified, so both (or none) are printed. - When specifying a pattern synonym's type explicitly with
PatSynSigD
either one of the universals, the existentials, or their contexts may be left empty.
See the GHC user's guide for more information on pattern synonyms and their types: https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#pattern-synonyms.
Library functions
module Language.Haskell.TH.Lib
Pretty-printer
Minimal complete definition
Instances
Ppr Exp | |
Ppr Match | |
Ppr Clause | |
Ppr Pat | |
Ppr Type | |
Ppr Dec | |
Ppr Name | |
Ppr FunDep | |
Ppr InjectivityAnn | |
Defined in Language.Haskell.TH.Ppr | |
Ppr Role | |
Ppr TyLit | |
Ppr FamilyResultSig | |
Defined in Language.Haskell.TH.Ppr | |
Ppr TyVarBndr | |
Ppr PatSynArgs | |
Defined in Language.Haskell.TH.Ppr | |
Ppr PatSynDir | |
Ppr Bang | |
Ppr Con | |
Ppr DecidedStrictness | |
Defined in Language.Haskell.TH.Ppr | |
Ppr SourceStrictness | |
Defined in Language.Haskell.TH.Ppr | |
Ppr SourceUnpackedness | |
Defined in Language.Haskell.TH.Ppr | |
Ppr RuleBndr | |
Ppr Phases | |
Ppr RuleMatch | |
Ppr Inline | |
Ppr Pragma | |
Ppr Foreign | |
Ppr Range | |
Ppr Stmt | |
Ppr Lit | |
Ppr ModuleInfo | |
Defined in Language.Haskell.TH.Ppr | |
Ppr Info | |
Ppr Loc | |
Ppr Module | |
Ppr TypeArg | |
Ppr a => Ppr [a] | |
pprint :: Ppr a => a -> String Source
pprExp :: Precedence -> Exp -> Doc Source
pprLit :: Precedence -> Lit -> Doc Source
pprPat :: Precedence -> Pat -> Doc Source
pprParendType :: Type -> Doc Source
© The University of Glasgow and others
Licensed under a BSD-style license (see top of the page).
https://downloads.haskell.org/~ghc/8.10.2/docs/html/libraries/template-haskell-2.16.0.0/Language-Haskell-TH.html