Data.ByteString.Lazy.Char8
Copyright | (c) Don Stewart 2006-2008 (c) Duncan Coutts 2006-2011 |
---|---|
License | BSD-style |
Maintainer | [email protected], [email protected] |
Stability | stable |
Portability | portable |
Safe Haskell | Trustworthy |
Language | Haskell98 |
Contents
- The
ByteString
type - Introducing and eliminating
ByteString
s - Basic interface
- Transforming ByteStrings
-
Reducing
ByteString
s (folds) - Building ByteStrings
- Substrings
- Predicates
- Searching ByteStrings
- Indexing ByteStrings
- Zipping and unzipping ByteStrings
- Ordered ByteStrings
- Low level conversions
- Reading from ByteStrings
-
I/O with
ByteString
s
Description
Manipulate lazy ByteString
s using Char
operations. All Chars will be truncated to 8 bits. It can be expected that these functions will run at identical speeds to their Word8
equivalents in Data.ByteString.Lazy.
This module is intended to be imported qualified
, to avoid name clashes with Prelude functions. eg.
import qualified Data.ByteString.Lazy.Char8 as C
The Char8 interface to bytestrings provides an instance of IsString for the ByteString type, enabling you to use string literals, and have them implicitly packed to ByteStrings. Use {-# LANGUAGE OverloadedStrings #-}
to enable this.
The ByteString type
data ByteString Source
A space-efficient representation of a Word8
vector, supporting many efficient operations.
A lazy ByteString
contains 8-bit bytes, or by using the operations from Data.ByteString.Lazy.Char8 it can be interpreted as containing 8-bit characters.
Instances
Introducing and eliminating ByteStrings
O(1) The empty ByteString
singleton :: Char -> ByteString Source
O(1) Convert a Char
into a ByteString
pack :: [Char] -> ByteString Source
O(n) Convert a String
into a ByteString
.
unpack :: ByteString -> [Char] Source
O(n) Converts a ByteString
to a String
.
fromChunks :: [ByteString] -> ByteString Source
O(c) Convert a list of strict ByteString
into a lazy ByteString
toChunks :: ByteString -> [ByteString] Source
O(c) Convert a lazy ByteString
into a list of strict ByteString
fromStrict :: ByteString -> ByteString Source
O(1) Convert a strict ByteString
into a lazy ByteString
.
toStrict :: ByteString -> ByteString Source
O(n) Convert a lazy ByteString
into a strict ByteString
.
Note that this is an expensive operation that forces the whole lazy ByteString into memory and then copies all the data. If possible, try to avoid converting back and forth between strict and lazy bytestrings.
Basic interface
cons :: Char -> ByteString -> ByteString infixr 5 Source
O(1) cons
is analogous to (:)
for lists.
cons' :: Char -> ByteString -> ByteString infixr 5 Source
O(1) Unlike cons
, cons'
is strict in the ByteString that we are consing onto. More precisely, it forces the head and the first chunk. It does this because, for space efficiency, it may coalesce the new byte onto the first 'chunk' rather than starting a new 'chunk'.
So that means you can't use a lazy recursive contruction like this:
let xs = cons' c xs in xs
You can however use cons
, as well as repeat
and cycle
, to build infinite lazy ByteStrings.
snoc :: ByteString -> Char -> ByteString infixl 5 Source
O(n) Append a Char to the end of a ByteString
. Similar to cons
, this function performs a memcpy.
append :: ByteString -> ByteString -> ByteString Source
O(n/c) Append two ByteStrings
head :: ByteString -> Char Source
O(1) Extract the first element of a ByteString, which must be non-empty.
uncons :: ByteString -> Maybe (Char, ByteString) Source
O(1) Extract the head and tail of a ByteString, returning Nothing if it is empty.
last :: ByteString -> Char Source
O(1) Extract the last element of a packed string, which must be non-empty.
tail :: ByteString -> ByteString Source
O(1) Extract the elements after the head of a ByteString, which must be non-empty.
unsnoc :: ByteString -> Maybe (ByteString, Char) Source
O(n/c) Extract the init
and last
of a ByteString, returning Nothing if it is empty.
init :: ByteString -> ByteString Source
O(n/c) Return all the elements of a ByteString
except the last one.
null :: ByteString -> Bool Source
O(1) Test whether a ByteString is empty.
length :: ByteString -> Int64 Source
O(n/c) length
returns the length of a ByteString as an Int64
Transforming ByteStrings
map :: (Char -> Char) -> ByteString -> ByteString Source
O(n) map
f xs
is the ByteString obtained by applying f
to each element of xs
reverse :: ByteString -> ByteString Source
O(n) reverse
xs
returns the elements of xs
in reverse order.
intersperse :: Char -> ByteString -> ByteString Source
O(n) The intersperse
function takes a Char and a ByteString
and `intersperses' that Char between the elements of the ByteString
. It is analogous to the intersperse function on Lists.
intercalate :: ByteString -> [ByteString] -> ByteString Source
O(n) The intercalate
function takes a ByteString
and a list of ByteString
s and concatenates the list after interspersing the first argument between each element of the list.
transpose :: [ByteString] -> [ByteString] Source
The transpose
function transposes the rows and columns of its ByteString
argument.
Reducing ByteStrings (folds)
foldl :: (a -> Char -> a) -> a -> ByteString -> a Source
foldl
, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ByteString, reduces the ByteString using the binary operator, from left to right.
foldl' :: (a -> Char -> a) -> a -> ByteString -> a Source
foldl'
is like foldl, but strict in the accumulator.
foldl1 :: (Char -> Char -> Char) -> ByteString -> Char Source
foldl1
is a variant of foldl
that has no starting value argument, and thus must be applied to non-empty ByteStrings
.
foldl1' :: (Char -> Char -> Char) -> ByteString -> Char Source
foldl1'
is like foldl1
, but strict in the accumulator.
foldr :: (Char -> a -> a) -> a -> ByteString -> a Source
foldr
, applied to a binary operator, a starting value (typically the right-identity of the operator), and a packed string, reduces the packed string using the binary operator, from right to left.
foldr1 :: (Char -> Char -> Char) -> ByteString -> Char Source
foldr1
is a variant of foldr
that has no starting value argument, and thus must be applied to non-empty ByteString
s
Special folds
concat :: [ByteString] -> ByteString Source
O(n) Concatenate a list of ByteStrings.
concatMap :: (Char -> ByteString) -> ByteString -> ByteString Source
Map a function over a ByteString
and concatenate the results
any :: (Char -> Bool) -> ByteString -> Bool Source
Applied to a predicate and a ByteString, any
determines if any element of the ByteString
satisfies the predicate.
all :: (Char -> Bool) -> ByteString -> Bool Source
Applied to a predicate and a ByteString
, all
determines if all elements of the ByteString
satisfy the predicate.
maximum :: ByteString -> Char Source
maximum
returns the maximum value from a ByteString
minimum :: ByteString -> Char Source
minimum
returns the minimum value from a ByteString
Building ByteStrings
Scans
scanl :: (Char -> Char -> Char) -> Char -> ByteString -> ByteString Source
scanl
is similar to foldl
, but returns a list of successive reduced values from the left. This function will fuse.
scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
Note that
last (scanl f z xs) == foldl f z xs.
Accumulating maps
mapAccumL :: (acc -> Char -> (acc, Char)) -> acc -> ByteString -> (acc, ByteString) Source
The mapAccumL
function behaves like a combination of map
and foldl
; it applies a function to each element of a ByteString, passing an accumulating parameter from left to right, and returning a final value of this accumulator together with the new ByteString.
mapAccumR :: (acc -> Char -> (acc, Char)) -> acc -> ByteString -> (acc, ByteString) Source
The mapAccumR
function behaves like a combination of map
and foldr
; it applies a function to each element of a ByteString, passing an accumulating parameter from right to left, and returning a final value of this accumulator together with the new ByteString.
Infinite ByteStrings
repeat :: Char -> ByteString Source
repeat x
is an infinite ByteString, with x
the value of every element.
replicate :: Int64 -> Char -> ByteString Source
O(n) replicate n x
is a ByteString of length n
with x
the value of every element.
cycle :: ByteString -> ByteString Source
cycle
ties a finite ByteString into a circular one, or equivalently, the infinite repetition of the original ByteString.
iterate :: (Char -> Char) -> Char -> ByteString Source
iterate f x
returns an infinite ByteString of repeated applications of f
to x
:
iterate f x == [x, f x, f (f x), ...]
Unfolding ByteStrings
unfoldr :: (a -> Maybe (Char, a)) -> a -> ByteString Source
O(n) The unfoldr
function is analogous to the List 'unfoldr'. unfoldr
builds a ByteString from a seed value. The function takes the element and returns Nothing
if it is done producing the ByteString or returns Just
(a,b)
, in which case, a
is a prepending to the ByteString and b
is used as the next element in a recursive call.
Substrings
Breaking strings
take :: Int64 -> ByteString -> ByteString Source
O(n/c) take
n
, applied to a ByteString xs
, returns the prefix of xs
of length n
, or xs
itself if n > length xs
.
drop :: Int64 -> ByteString -> ByteString Source
O(n/c) drop
n xs
returns the suffix of xs
after the first n
elements, or []
if n > length xs
.
splitAt :: Int64 -> ByteString -> (ByteString, ByteString) Source
O(n/c) splitAt
n xs
is equivalent to (take n xs, drop n xs)
.
takeWhile :: (Char -> Bool) -> ByteString -> ByteString Source
takeWhile
, applied to a predicate p
and a ByteString xs
, returns the longest prefix (possibly empty) of xs
of elements that satisfy p
.
dropWhile :: (Char -> Bool) -> ByteString -> ByteString Source
dropWhile
p xs
returns the suffix remaining after takeWhile
p xs
.
span :: (Char -> Bool) -> ByteString -> (ByteString, ByteString) Source
span
p xs
breaks the ByteString into two segments. It is equivalent to (takeWhile p xs, dropWhile p xs)
break :: (Char -> Bool) -> ByteString -> (ByteString, ByteString) Source
break
p
is equivalent to span (not . p)
.
group :: ByteString -> [ByteString] Source
The group
function takes a ByteString and returns a list of ByteStrings such that the concatenation of the result is equal to the argument. Moreover, each sublist in the result contains only equal elements. For example,
group "Mississippi" = ["M","i","ss","i","ss","i","pp","i"]
It is a special case of groupBy
, which allows the programmer to supply their own equality test.
groupBy :: (Char -> Char -> Bool) -> ByteString -> [ByteString] Source
The groupBy
function is the non-overloaded version of group
.
inits :: ByteString -> [ByteString] Source
O(n) Return all initial segments of the given ByteString
, shortest first.
tails :: ByteString -> [ByteString] Source
O(n) Return all final segments of the given ByteString
, longest first.
stripPrefix :: ByteString -> ByteString -> Maybe ByteString Source
O(n) The stripPrefix
function takes two ByteStrings and returns Just
the remainder of the second iff the first is its prefix, and otherwise Nothing
.
Since: bytestring-0.10.8.0
stripSuffix :: ByteString -> ByteString -> Maybe ByteString Source
O(n) The stripSuffix
function takes two ByteStrings and returns Just
the remainder of the second iff the first is its suffix, and otherwise Nothing
.
Breaking into many substrings
split :: Char -> ByteString -> [ByteString] Source
O(n) Break a ByteString
into pieces separated by the byte argument, consuming the delimiter. I.e.
split '\n' "a\nb\nd\ne" == ["a","b","d","e"] split 'a' "aXaXaXa" == ["","X","X","X"] split 'x' "x" == ["",""]
and
intercalate [c] . split c == id split == splitWith . (==)
As for all splitting functions in this library, this function does not copy the substrings, it just constructs new ByteStrings
that are slices of the original.
splitWith :: (Char -> Bool) -> ByteString -> [ByteString] Source
O(n) Splits a ByteString
into components delimited by separators, where the predicate returns True for a separator element. The resulting components do not contain the separators. Two adjacent separators result in an empty component in the output. eg.
splitWith (=='a') "aabbaca" == ["","","bb","c",""]
Breaking into lines and words
lines :: ByteString -> [ByteString] Source
lines
breaks a ByteString up into a list of ByteStrings at newline Chars. The resulting strings do not contain newlines.
As of bytestring 0.9.0.3, this function is stricter than its list cousin.
words :: ByteString -> [ByteString] Source
words
breaks a ByteString up into a list of words, which were delimited by Chars representing white space. And
tokens isSpace = words
unlines :: [ByteString] -> ByteString Source
unlines
is an inverse operation to lines
. It joins lines, after appending a terminating newline to each.
unwords :: [ByteString] -> ByteString Source
The unwords
function is analogous to the unlines
function, on words.
Predicates
isPrefixOf :: ByteString -> ByteString -> Bool Source
O(n) The isPrefixOf
function takes two ByteStrings and returns True
iff the first is a prefix of the second.
isSuffixOf :: ByteString -> ByteString -> Bool Source
O(n) The isSuffixOf
function takes two ByteStrings and returns True
iff the first is a suffix of the second.
The following holds:
isSuffixOf x y == reverse x `isPrefixOf` reverse y
Searching ByteStrings
Searching by equality
elem :: Char -> ByteString -> Bool Source
O(n) elem
is the ByteString
membership predicate. This implementation uses memchr(3)
.
notElem :: Char -> ByteString -> Bool Source
O(n) notElem
is the inverse of elem
Searching with a predicate
find :: (Char -> Bool) -> ByteString -> Maybe Char Source
O(n) The find
function takes a predicate and a ByteString, and returns the first element in matching the predicate, or Nothing
if there is no such element.
filter :: (Char -> Bool) -> ByteString -> ByteString Source
O(n) filter
, applied to a predicate and a ByteString, returns a ByteString containing those characters that satisfy the predicate.
Indexing ByteStrings
index :: ByteString -> Int64 -> Char Source
O(1) ByteString
index (subscript) operator, starting from 0.
elemIndex :: Char -> ByteString -> Maybe Int64 Source
O(n) The elemIndex
function returns the index of the first element in the given ByteString
which is equal (by memchr) to the query element, or Nothing
if there is no such element.
elemIndices :: Char -> ByteString -> [Int64] Source
O(n) The elemIndices
function extends elemIndex
, by returning the indices of all elements equal to the query element, in ascending order.
findIndex :: (Char -> Bool) -> ByteString -> Maybe Int64 Source
The findIndex
function takes a predicate and a ByteString
and returns the index of the first element in the ByteString satisfying the predicate.
findIndices :: (Char -> Bool) -> ByteString -> [Int64] Source
The findIndices
function extends findIndex
, by returning the indices of all elements satisfying the predicate, in ascending order.
count :: Char -> ByteString -> Int64 Source
count returns the number of times its argument appears in the ByteString
count == length . elemIndices count '\n' == length . lines
But more efficiently than using length on the intermediate list.
Zipping and unzipping ByteStrings
zip :: ByteString -> ByteString -> [(Char, Char)] Source
O(n) zip
takes two ByteStrings and returns a list of corresponding pairs of Chars. If one input ByteString is short, excess elements of the longer ByteString are discarded. This is equivalent to a pair of unpack
operations, and so space usage may be large for multi-megabyte ByteStrings
zipWith :: (Char -> Char -> a) -> ByteString -> ByteString -> [a] Source
zipWith
generalises zip
by zipping with the function given as the first argument, instead of a tupling function. For example, zipWith (+)
is applied to two ByteStrings to produce the list of corresponding sums.
Ordered ByteStrings
Low level conversions
Copying ByteStrings
copy :: ByteString -> ByteString Source
O(n) Make a copy of the ByteString
with its own storage. This is mainly useful to allow the rest of the data pointed to by the ByteString
to be garbage collected, for example if a large string has been read in, and only a small part of it is needed in the rest of the program.
Reading from ByteStrings
readInt :: ByteString -> Maybe (Int, ByteString) Source
readInt reads an Int from the beginning of the ByteString. If there is no integer at the beginning of the string, it returns Nothing, otherwise it just returns the int read, and the rest of the string.
Note: This function will overflow the Int for large integers.
readInteger :: ByteString -> Maybe (Integer, ByteString) Source
readInteger reads an Integer from the beginning of the ByteString. If there is no integer at the beginning of the string, it returns Nothing, otherwise it just returns the int read, and the rest of the string.
I/O with ByteStrings
ByteString I/O uses binary mode, without any character decoding or newline conversion. The fact that it does not respect the Handle newline mode is considered a flaw and may be changed in a future version.
Standard input and output
getContents :: IO ByteString Source
getContents. Equivalent to hGetContents stdin. Will read lazily
putStr :: ByteString -> IO () Source
Write a ByteString to stdout
putStrLn :: ByteString -> IO () Source
Write a ByteString to stdout, appending a newline byte
interact :: (ByteString -> ByteString) -> IO () Source
The interact function takes a function of type ByteString -> ByteString
as its argument. The entire input from the standard input device is passed to this function as its argument, and the resulting string is output on the standard output device.
Files
readFile :: FilePath -> IO ByteString Source
Read an entire file lazily into a ByteString
. The Handle will be held open until EOF is encountered.
writeFile :: FilePath -> ByteString -> IO () Source
Write a ByteString
to a file.
appendFile :: FilePath -> ByteString -> IO () Source
Append a ByteString
to a file.
I/O with Handles
hGetContents :: Handle -> IO ByteString Source
Read entire handle contents lazily into a ByteString
. Chunks are read on demand, using the default chunk size.
Once EOF is encountered, the Handle is closed.
Note: the Handle
should be placed in binary mode with hSetBinaryMode
for hGetContents
to work correctly.
hGet :: Handle -> Int -> IO ByteString Source
Read n
bytes into a ByteString
, directly from the specified Handle
.
hGetNonBlocking :: Handle -> Int -> IO ByteString Source
hGetNonBlocking is similar to hGet
, except that it will never block waiting for data to become available, instead it returns only whatever data is available. If there is no data available to be read, hGetNonBlocking
returns empty
.
Note: on Windows and with Haskell implementation other than GHC, this function does not work correctly; it behaves identically to hGet
.
hPut :: Handle -> ByteString -> IO () Source
Outputs a ByteString
to the specified Handle
. The chunks will be written one at a time. Other threads might write to the Handle
between the writes, and hence hPut
alone might not be suitable for concurrent writes.
hPutNonBlocking :: Handle -> ByteString -> IO ByteString Source
Similar to hPut
except that it will never block. Instead it returns any tail that did not get written. This tail may be empty
in the case that the whole string was written, or the whole original string if nothing was written. Partial writes are also possible.
Note: on Windows and with Haskell implementation other than GHC, this function does not work correctly; it behaves identically to hPut
.
hPutStr :: Handle -> ByteString -> IO () Source
A synonym for hPut
, for compatibility
hPutStrLn :: Handle -> ByteString -> IO () Source
Write a ByteString to a handle, appending a newline byte
© The University of Glasgow and others
Licensed under a BSD-style license (see top of the page).
https://downloads.haskell.org/~ghc/8.10.2/docs/html/libraries/bytestring-0.10.10.0/Data-ByteString-Lazy-Char8.html