tensorflow::ops::SparseSoftmaxCrossEntropyWithLogits
#include <nn_ops.h>
Computes softmax cross entropy cost and gradients to backpropagate.
Summary
Unlike SoftmaxCrossEntropyWithLogits
, this operation does not accept a matrix of label probabilities, but rather a single label per row of features. This label is considered to have probability 1.0 for the given row.
Inputs are the logits, not probabilities.
Arguments:
- scope: A Scope object
- features: batch_size x num_classes matrix
- labels: batch_size vector with values in [0, num_classes). This is the label for the given minibatch entry.
Returns:
-
Output
loss: Per example loss (batch_size vector). -
Output
backprop: backpropagated gradients (batch_size x num_classes matrix).
Constructors and Destructors | |
---|---|
SparseSoftmaxCrossEntropyWithLogits(const ::tensorflow::Scope & scope, ::tensorflow::Input features, ::tensorflow::Input labels) |
Public attributes | |
---|---|
backprop | |
loss | |
operation |
Public attributes
backprop
::tensorflow::Output backprop
loss
::tensorflow::Output loss
operation
Operation operation
Public functions
SparseSoftmaxCrossEntropyWithLogits
SparseSoftmaxCrossEntropyWithLogits( const ::tensorflow::Scope & scope, ::tensorflow::Input features, ::tensorflow::Input labels )
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/cc/class/tensorflow/ops/sparse-softmax-cross-entropy-with-logits