tensorflow::ops::SparseReorder

#include <sparse_ops.h>

Reorders a SparseTensor into the canonical, row-major ordering.

Summary

Note that by convention, all sparse ops preserve the canonical ordering along increasing dimension number. The only time ordering can be violated is during manual manipulation of the indices and values vectors to add entries.

Reordering does not affect the shape of the SparseTensor.

If the tensor has rank R and N non-empty values, input_indices has shape [N, R], input_values has length N, and input_shape has length R.

Arguments:

  • scope: A Scope object
  • input_indices: 2-D. N x R matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering.
  • input_values: 1-D. N non-empty values corresponding to input_indices.
  • input_shape: 1-D. Shape of the input SparseTensor.

Returns:

  • Output output_indices: 2-D. N x R matrix with the same indices as input_indices, but in canonical row-major ordering.
  • Output output_values: 1-D. N non-empty values corresponding to output_indices.
Constructors and Destructors
SparseReorder(const ::tensorflow::Scope & scope, ::tensorflow::Input input_indices, ::tensorflow::Input input_values, ::tensorflow::Input input_shape)
Public attributes
operation
output_indices
output_values

Public attributes

operation

Operation operation

output_indices

::tensorflow::Output output_indices

output_values

::tensorflow::Output output_values

Public functions

SparseReorder

 SparseReorder(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input input_indices,
  ::tensorflow::Input input_values,
  ::tensorflow::Input input_shape
)

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/cc/class/tensorflow/ops/sparse-reorder