tensorflow::ops::ResourceApplyAdagrad
#include <training_ops.h>
Update '*var' according to the adagrad scheme.
Summary
accum += grad * grad var -= lr * grad * (1 / sqrt(accum))
Arguments:
- scope: A Scope object
- var: Should be from a Variable().
- accum: Should be from a Variable().
- lr: Scaling factor. Must be a scalar.
- grad: The gradient.
Optional attributes (see Attrs
):
- use_locking: If
True
, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
- the created
Operation
Constructors and Destructors | |
---|---|
ResourceApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad) | |
ResourceApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, const ResourceApplyAdagrad::Attrs & attrs) |
Public attributes | |
---|---|
operation |
Public functions | |
---|---|
operator::tensorflow::Operation() const |
Public static functions | |
---|---|
UpdateSlots(bool x) | |
UseLocking(bool x) |
Structs | |
---|---|
tensorflow::ops::ResourceApplyAdagrad::Attrs | Optional attribute setters for ResourceApplyAdagrad. |
Public attributes
operation
Operation operation
Public functions
ResourceApplyAdagrad
ResourceApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad )
ResourceApplyAdagrad
ResourceApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, const ResourceApplyAdagrad::Attrs & attrs )
operator::tensorflow::Operation
operator::tensorflow::Operation() const
Public static functions
UpdateSlots
Attrs UpdateSlots( bool x )
UseLocking
Attrs UseLocking( bool x )
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/cc/class/tensorflow/ops/resource-apply-adagrad