tensorflow::ops::SparseApplyRMSProp

#include <training_ops.h>

Update '*var' according to the RMSProp algorithm.

Summary

Note that in dense implementation of this algorithm, ms and mom will update even if the grad is zero, but in this sparse implementation, ms and mom will not update in iterations during which the grad is zero.

mean_square = decay * mean_square + (1-decay) * gradient ** 2 Delta = learning_rate * gradient / sqrt(mean_square + epsilon)

$$ms
$$mom
$$var

Arguments:

  • scope: A Scope object
  • var: Should be from a Variable().
  • ms: Should be from a Variable().
  • mom: Should be from a Variable().
  • lr: Scaling factor. Must be a scalar.
  • rho: Decay rate. Must be a scalar.
  • epsilon: Ridge term. Must be a scalar.
  • grad: The gradient.
  • indices: A vector of indices into the first dimension of var, ms and mom.

Optional attributes (see Attrs):

  • use_locking: If True, updating of the var, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

Constructors and Destructors
SparseApplyRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices)
SparseApplyRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyRMSProp::Attrs & attrs)
Public attributes
operation
out
Public functions
node() const
::tensorflow::Node *
operator::tensorflow::Input() const
operator::tensorflow::Output() const
Public static functions
UseLocking(bool x)
Structs
tensorflow::ops::SparseApplyRMSProp::Attrs

Optional attribute setters for SparseApplyRMSProp.

Public attributes

operation

Operation operation

out

::tensorflow::Output out

Public functions

SparseApplyRMSProp

 SparseApplyRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices
)

SparseApplyRMSProp

 SparseApplyRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  const SparseApplyRMSProp::Attrs & attrs
)

node

::tensorflow::Node * node() const 

operator::tensorflow::Input

operator::tensorflow::Input() const 

operator::tensorflow::Output

operator::tensorflow::Output() const 

Public static functions

UseLocking

Attrs UseLocking(
  bool x
)

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/cc/class/tensorflow/ops/sparse-apply-r-m-s-prop