Visualization
We use the standard convention for referencing the matplotlib API:
In [1]: import matplotlib.pyplot as plt
We provide the basics in pandas to easily create decent looking plots. See the ecosystem section for visualization libraries that go beyond the basics documented here.
Note
All calls to np.random
are seeded with 123456.
Basic Plotting: plot
See the cookbook for some advanced strategies
The plot
method on Series and DataFrame is just a simple wrapper around plt.plot()
:
In [2]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) In [3]: ts = ts.cumsum() In [4]: ts.plot() Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0x123d5ea90>
If the index consists of dates, it calls gcf().autofmt_xdate()
to try to format the x-axis nicely as per above.
On DataFrame, plot()
is a convenience to plot all of the columns with labels:
In [5]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD')) In [6]: df = df.cumsum() In [7]: plt.figure(); df.plot();
You can plot one column versus another using the x
and y
keywords in plot()
:
In [8]: df3 = pd.DataFrame(np.random.randn(1000, 2), columns=['B', 'C']).cumsum() In [9]: df3['A'] = pd.Series(list(range(len(df)))) In [10]: df3.plot(x='A', y='B') Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1179a0400>
Note
For more formatting and styling options, see below.
Other Plots
Plotting methods allow for a handful of plot styles other than the default Line plot. These methods can be provided as the kind
keyword argument to plot()
. These include:
- ‘bar’ or ‘barh’ for bar plots
- ‘hist’ for histogram
- ‘box’ for boxplot
-
‘kde’ or
'density'
for density plots - ‘area’ for area plots
- ‘scatter’ for scatter plots
- ‘hexbin’ for hexagonal bin plots
- ‘pie’ for pie plots
For example, a bar plot can be created the following way:
In [11]: plt.figure(); In [12]: df.iloc[5].plot(kind='bar');
New in version 0.17.0.
You can also create these other plots using the methods DataFrame.plot.<kind>
instead of providing the kind
keyword argument. This makes it easier to discover plot methods and the specific arguments they use:
In [13]: df = pd.DataFrame() In [14]: df.plot.<TAB> df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line df.plot.scatter df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie
In addition to these kind
s, there are the DataFrame.hist(), and DataFrame.boxplot() methods, which use a separate interface.
Finally, there are several plotting functions in pandas.plotting
that take a Series
or DataFrame
as an argument. These include:
- Scatter Matrix
- Andrews Curves
- Parallel Coordinates
- Lag Plot
- Autocorrelation Plot
- Bootstrap Plot
- RadViz
Plots may also be adorned with errorbars or tables.
Bar plots
For labeled, non-time series data, you may wish to produce a bar plot:
In [15]: plt.figure(); In [16]: df.iloc[5].plot.bar(); plt.axhline(0, color='k') Out[16]: <matplotlib.lines.Line2D at 0x11baeaa20>
Calling a DataFrame’s plot.bar()
method produces a multiple bar plot:
In [17]: df2 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd']) In [18]: df2.plot.bar();
To produce a stacked bar plot, pass stacked=True
:
In [19]: df2.plot.bar(stacked=True);
To get horizontal bar plots, use the barh
method:
In [20]: df2.plot.barh(stacked=True);
Histograms
Histogram can be drawn by using the DataFrame.plot.hist()
and Series.plot.hist()
methods.
In [21]: df4 = pd.DataFrame({'a': np.random.randn(1000) + 1, 'b': np.random.randn(1000), ....: 'c': np.random.randn(1000) - 1}, columns=['a', 'b', 'c']) ....: In [22]: plt.figure(); In [23]: df4.plot.hist(alpha=0.5) Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x127792160>
Histogram can be stacked by stacked=True
. Bin size can be changed by bins
keyword.
In [24]: plt.figure(); In [25]: df4.plot.hist(stacked=True, bins=20) Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x1217ff908>
You can pass other keywords supported by matplotlib hist
. For example, horizontal and cumulative histogram can be drawn by orientation='horizontal'
and cumulative=True
.
In [26]: plt.figure(); In [27]: df4['a'].plot.hist(orientation='horizontal', cumulative=True) Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x11cd1a470>
See the hist
method and the matplotlib hist documentation for more.
The existing interface DataFrame.hist
to plot histogram still can be used.
In [28]: plt.figure(); In [29]: df['A'].diff().hist() Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x10cc47ef0>
DataFrame.hist()
plots the histograms of the columns on multiple subplots:
In [30]: plt.figure() Out[30]: <Figure size 640x480 with 0 Axes> In [31]: df.diff().hist(color='k', alpha=0.5, bins=50)
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.22.0/visualization.html